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ABSTRACT 

This paper presents the main algorithms of a computer model, 
which was developed to estimate the polarization characteristics 
of double-bounce reflection between semi-transparent disc 
elements and a rough surface below. The polarization matrix of 
a single disc with arbitrary orientation is first determined. A 
cloud model is then applied to estimate the backscattering from 
leaf elements in a canopy. Both single and double bounce 
reflections from the leaves and the rough soil surface are 
included. Finally, correlation matrices and probability density 
functions of the polarized response are derived for two-bounce 
scattering between dielectric discs and metal surfaces. 
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1. INTRODUCTION 

In this paper, the two-bounce and single-bounce scattering from 
a semi-transparent vegetation canopy is modelled using a 
geometric optics approach, which can be considered relevant to 
both mm-waves and optical wavelengths. The model includes as 
well the interaction between the canopy and the rough ground 
surface below. 

The one-bounce and two-bounce reflections of a single disc 
object positioned above a rough surface are first analyzed. The 
single disc model is then generalized to a cloud model 
containing a large number of discs randomly orientated. Finally, 
the polarimetric statistics of the scattered wave are analyzed in 
terms of correlation matrices and probability density functions. 

2. POLARIZATION MATRIX OF A TILTED DISC 

If n i is the direction of incidence of the electromagnetic field, 
the direction of the specular reflection from a tilted disc (n s) 
can be expressed as 

(1) 

where n 1 is the unit normal of the disc satisfying (n i n I) < O. 

The incident electric field Ei = Evivi + Ebihi and the field reflected 
by the disc Es=Evsvs+Ehshs are related by the Jones matrix Pd 

(2) 

The Fresnel reflection coefficients involved are defined assuming 
that the incident and reflected field components are 
perpendicular or parallell to the plane of incidence. For that 
reason, a local coordinate system (ni' Wi' llj) has to be introduced 
as follows 

(3) 

(4) 

where U i is perpendicular to the plane of incidence and Wi is 
parallel to it. 
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The polarization directions referred to the external coordinate 
system (hi and Vi with hi in the xy-plane) are also derived from 
(3) and (4) with n 1 = z. 

The polarization directions of the reflected wave (hs' Vs and Us, 
ws) are defined similarly by substituting ni by ns' 

From (2)-(4), the elements of the polarization matrix of the disc 
can then be derived as follows 

Pih,v) = (vjui)(ushs)R u + (v iWi)(wshs)Rw 

Pd(v,h) = (hiui)(Usv s)R u + (h iW i)(W sV s)Rw 

Piv,v) = (ViUi)(USvs)R u + (v iWi)(Wsvs)Rw 

(6) 

(7) 

(8) 

where R u and Rw are the specular reflection coefficients of the 
disc. 

In (5)-(8), the local unit vectors U and ware used. It is often 
more useful to express the polarization matrix in terms of n i and 
n s' which define the incidence and scattering directions in the 
external reference system. 

This transformation is straight-forward if an alternative 
definition of U i is applied 

combined with the two vector multiplication rules: 

A(B x C) = B(C x A) 

A x (B x C)= (AC)B - (AB)C 

The result is as follows: 

Pih,h) = -[R~lP2 + R uP 3P 4]/D 2 

Pih,v) = -[RwP IP 4 - R uP 2P 3]/D 2 

(9) 

(10) 

(11) 

(12) 

(13) 

(15) 

where D = In Jffi ii, P 1 = h sn i' P 2 = h in s. P 3 = V sn i and P 4 = V in s 
have also been introduced. 

3. REFLECTION AND TRANSMISSION COEFFICIENTS 

The transmission and reflection coefficients of a flat semi
transparent disc of thickness d and the complex dielectric 
constant e = e' + je" can be estimated (Born and Wolf, 1975) 

Rp = (ROl + R121'2)/(1 + 1' 2R o1R 12) 

T p = 1'T olT 12 /(1 + l' 2RO lR 12) 

(16) 

(17) 



where p = u or w, and R 01' R 12, T01' T12 are the Fresnel 
reflection and transmisssion coefficients of the upper and lower 
surface boundary of the disc, respectively. The transmission 
factor 1:' is determined by 

1:' = expGP) 
with 

P = (2rcd/A)[e-sin2(6oW/2 

(18) 

(19) 

The dielectric constant e = 4 + j4 is representative for leaves at 95 
GHz (M~itzler and Sume, 1989). From (17), it is found that 
leaves of most species (d = 0.1 - 0.2 mm) have a significant 
transmission at 95 GHz. For oblique incidence angles, there are 
also great differences between ~ and T p for vertical and 
horizontal polarization as a result of the Brewster angle effect. 

As an example, Table 1 shows the phase differences between 
the parallel and perpendiCUlar polarization components of Rp 
and T p for d=O.2 mm, A=3 mm and e=4+j4. The phase 
difference of the transmission coefficients is only a few degrees 
for most angles of incidence. 

TABLE 1. Phase angle difference (degrees) between the 
reflection coefficients for vertical and horizontal polarization 
and that of the transmission coefficients (d = 0.2 mm, A = 3 mm 
and e=4+j4). 

INCIDENCE ANGLE PHASE ANGLE DIFFERENCE 

(Deg.) Reflection Transmission 

0 -180.0 0.0 
30 -176.3 1.0 
45 -169.3 2.6 
60 -144.1 4.9 
75 -55.3 11.7 
85 -18.8 28.0 

The phase difference of the reflected components is 180 degrees 
for 6 0 = 0 but is gradually reduced at oblique incidence (75 and 
85 degrees in Table 1). For metal surfaces, however, the 180 
degree difference remains for all angles of incidence. This 
displays the well-known polarization change from right-handed 
to left-handed rotation (and vice versa) when a circularly 
polarized wave is reflected by a metal surface. At oblique 
reflection from a dielectric surface with losses, the scattered 
wave contains both components. 

4. MULTIPLE SCATTERING BETWEEN DISCS 

The computation procedure for single reflection can also be 
extended to multiple scattering between discs with positions and 
inclinations that make multiple reflections between them 
possible. The scattering direction of the first reflection then 
defines the incidence direction of the second one (n i 2 = n s 1) 
and the procedure is repeated. After N reflections, the 
polarization matrix is defined by 

(20) 

By the use of (5)-(20), it is possible to compare the phase 
difference between the vertical and horizontal components of a 
two-bounce reflected wave, which is detected by a monostatic 
radar. The surface normals are assumed to be spherically 
directed by random but linked together so that the two-bounce 
reflected wave between two discs is directed back towards the 
radar receiver. See Figure 1. 

For metal discs the phase difference is close to 0 degrees after 
a two-bounce reflection, because each reflection turns the phase 
difference about 180 degrees. The two-bounce reflected signal 
has then approximately the same type of circular polarization as 
the transmitted (left-handed or right-handed), while the 
polariza,tion state is reversed for an odd number of reflections. 
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For dielectric objects with losses, the phase difference is spread 
out over a much wider angular interval. As a consequence, the 
two-bounce reflected wave from dielectric objects of random 
orientation contain both left circular and right circular 
components, even if the incident wave is right-handed or left
handed polarized. 

The reflection between a metal plate and a dielectric disc shows 
phase difference distributions, which have the same peaks as for 
double-bounce scattering between two metal discs. The side-lobe 
level is increased significantly, however. 

5. GROUND SURFACE SCATTERING 

In order to describe the polarization matrix of two-bounce 
reflection between a disc and bare ground, the scattering of 
rough surfaces has to be discussed. 

Let us confine the discussion to the situation when the radii of 
curvature of the surface undulations are of the order of a 
wavelength or more, which justifies the use of the stationary 
phase approximation; see Ulaby et al. (1982) and Tsang et al. 
(1985) for a more detailed discussion. 

When the stationary phase condition is satisfied, the surface 
normal is defined by 

n I = (n s - n i) / Ins - nil (21) 

and the elements of of the scattering matrix S can be expressed 
as 

where I is the surface integral 

I = J expGqr l)dS 1 

with 

(22) 

(23) 

(24) 

The angle 6 isis the local angle of incidence at the stationary 
phase points of the ground surface. From (21), it is found that 

cos(6 is) = -nln i = (1-n jn s)/ Ins-nj I (25) 

The matrix element P pq is defined by (12)-(15). However, Ru 
and Rw now represent tlie Fresnel reflection coefficients of the 
ground surface and are defined by its complex dielectric 
constant. 

From Tsang et al. (1985), the correlation products of the 
scattering matrix elements are then given by 

<SpqSmn *> = A (koq/qz 2)2 cos2(6is)p(h x ,hy)P pqP mn' (26) 

where p(hx,hy) is the probability density function of the surface 
slopes in the x- and y-directions, respectively. The local slopes 
at the specular points hx and hy are obtained from 

hx = -qx/qz 

hy = -qy/qz 

where ~, qyand qz are defined by (24). 

6. DOUBLE-BOUNCE INTERACTION 

(27) 

(28) 

Let us now consider the scattering from a tilted disc, which is 
positioned above a rough scattering ground surface. Looking at 
two-bounce scattering, we notice that there are two different 
paths of propagation: (i) via the disc and the ground, and (ii) via 
the ground and the disc, respectively. 



For a mono-static radar (ns=-n j ), the scattering matrix of the 
double-bounce reflection can then be written as 

(29) 

where the polarization matrix P is now defined as 

P = [P ins d,-n i)P ctCni,n Sd) + P ctC-nsd,-ni)P g(ni,-n Sd)] (30) 

The matrices P g and P d are the polarization matrices of the 
ground and the disc, respectively, and nsd is the scattering 
direction of the disc as defined by (1). The principle of 
reciprocity makes the two matrix products of (30) equal. 

The correlation products of S are then from (26) 

<SpqSmn *> = A (koq/q/) 2 cos2(8is)p(h x ,hy)P pqP mn * (31) 

where q is now defined by q = kO(nsd - ns) and hx' hy by (27)
(28). 

The area A in (31) denotes the spot on the ground surface, 
which is illuminated by the specular reflection via the disc. If the 
single-sided area of the disc Ao is introduced, we derive from the 
geometry 

A = Ao cos(8 id)/cos(8 ig) (32) 

where 8 j d represents the incidence angle of n i at the disc and 
8 ig is the incidence angle of the wave reflected by the disc and 
propagating towards the ground surface in the direction n s d' 
Obviously cos( 8 i d) = -n in I and cos( 8 i g) = -n s dZ, 

The average radar cross-section of the two-bounce reflection of 
the disc via the ground and reversely from the ground via the 
disc is 

(33) 

Insertion of (31) into (33) gives the radar cross-sections (1 pq of 
the two-bounce reflection of the disc/ ground. 

An equivalent backscattering radar cross-section per unit area 
of the disc, representing the double reflection between the disc 
and the rough surface, is obtained from 

(34) 

In the above expressions, the unit normal of the disc was 
assumed to be fixed. The corresponding relationship for a 
random unit normal direction is given by 

(35) 

where pen \) is the probability density function and the 
integration is performed over 411:. 

The above results can be generalized to a cloud of discs. In the 
mm-wave band, this is a useful model of backscattering from a 
leaf canopy. 

The leaf direction statistics highly depend on the type of 
vegetation and its state of development. When the leaf normal 
has a spherical distribution, all directions have the same 
probability. In that case, 

p(nJ = 1/411: (36) 

When the mean direction of the leaf normal is horizontal (i.e. 
vertical leaves in average), we can use, for instance 

(37) 

to model the performance. 

An alternative is 

(38) 
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giving a more narrow distribution. 

In the case of vertical mean normal direction (i.e. horizontal 
leaves in average), we can apply 

(39) 

where n is an integer. Figure 2 shows the shapes of p( n I) for 
(36), (38) and (39) for n = 4 and n = 10. 

7. SINGLE BACKSCATIERING FROM VEGETATION 

7.1 General model 

The leaf area of a vegetation canopy is usually characterized by 
the leaf-area-index (LAI), which means the total leaf area (one
side) per unit area of the ground. If h is the canopy height, the 
ratio LAI/h is the leaf area per unit volume. 

The radar cross-section per unit area of the ground can be 
expressed as a sum of three components 

(40) 

where (1 sO represents the backscattering of the rough soil
surface, (1 v 0 is the volume scattering from the canopy and a sv 0 

is the scattering due to the interaction between the surface and 
the canopy elements. 

The factor 1:c is the transmission factor of the canopy (two
ways), which can be expressed for mono-static radar as 

(41) 

where 1: e is the one-way transmission factor of the vegetation 
canopy and 1:0 is the corresponding transmission factor when the 
leaves are considered opaque. 

Hence, 1: e and 1:0 can be written as 

1:e = exp(- keh/cos(8 j ) 

1:0 = exp(- koh/cos(8i) 

The coefficients ko and ~ are given by 

(42) 

(43) 

(44) 

where T I( n i,n I) is the power transmission factor of the leaf 
derived from (17) with T J = IT P 12 for p= u or w. 

As a consequence of (45), ke depends on the polarization as 
well. 

For opaque leaves, in particular, 1:e = 1:0, From (41) follows 

(46) 

For bistatic scattering, the two-paths transmission factor is 
instead 

which for ns = -ni (mono-static radar) gives 

(48) 

For opaque leaves, the bistatic expression gives in the 
monostatic limit 

(49) 

Comparison between (46) and (49) shows a significant deviation. 



This is due to the fact that (47)-(49) are based on the 
assumption that the positions of the leaf elements in the up
ward and down-ward paths are statistically independent. This is 
not true for the monostatic radar, where the same path is used 
in both directions. For geometric-optics propagation, (41) should 
therefore be used instead of (48). When 'to< <'te, however, (41) 
is approaching (48). 

The average radar cross-section of a disc or a leaf can be 
expressed as follows (Axelsson, 1991) 

where An is the mean leaf area (one-side) and Poz = I ~ IZ is the 
power reflection coefficient of the leaf according to (16) at 
perpendicular direction of incidence. 

Eq.(50) is a good approximation even when the leaf is slightly 
curved, provided that the main beam of reflection (Il Q 0) is much 
smaller than the beam generated by the random distribution of 
the leaf normal direction. 

The volume scattering component a v ° can be estimated, if we 
first consider a scattering layer of thickness dz at z. The 
contribution is then given by 

(51) 

After integration from z=O to z=h and use of (50), we obtain 

avO = (LAI/h)TCPoZ Kzf'tc(z,8j) dz 

where K z = p(Oj) + pC-oJ 

(52) 

After insertion of (41)-(43) into (52) and series development of 
the factor (1-'t otl = 1 + 't 0+ 't OZ + 't 03 + ... , the following solution of 
the integral is derived 

(53) 

where the integration is from 0 to h and the summation from 
n = 0 to infinity. 

The terms 11m are defined as follows 

11m = [1-exp(-Almh/cos(8J]cos(8J/AIm 

where k = 1, 2, 3 and 

AZn = (n + l)ko 

7.2 Opaque leaves 

(54) 

(55a) 

(55b) 

(55 c) 

For opaque leaves, ke = ko, which means A1n = AZn = (n+2)ko 
and AZn = (n + l)ko' Insertion into (53) shows that the sum ends 
up with the term Izo, or 

which can be obtained more directly by integrating (46). 

Insertion of (44) and (56) into (52) then yields 

avo = TCPoZ(Kz/Kl)cos(8 j)[1- exp(-KlLAI/cos(8 j)] (57) 

where K z = p(Oj) + pC-Oj) and 

Kl = < 10joll > = floiOl1 p(ol)dQI (58) 

For non-uniform leaf orientation, the factors Kl and K z 
introduce a modified dependence on the angle of incidence. 
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In particular, for spherical distribution of the normal direction 
Kl = < I 0iOII > = 0.5 and K2 = 1/2TC. After insertion into (57) 
follows 

a/Cui) = Poz cos(8J [1- exp(-LAI/(2cos8 i))] (59) 

which is displayed in Figure 3. 

8. DOUBLE BOUNCE INTERACTION GROUND/LEAVES 

The two-bounce radar cross-section of an individual leaf with 
unit normal ° I and located at z is 

(60) 

where a p q is the two-bounce radar cross-section of a single disc 
according to (30)-(33) and the transmission factors are defined 
by 

r 1 = (h - z) / cos(8 j) 

r 2 = z / cos( 8 s) 

r 3 = h / cos( 8 i) 

(61) 

(62) 

(63) 

(64) 

In (61), kel = ke3 = ke(oj) and k eZ = ke(Osd)' where the unit 
vector 0sd represents the scattering direction of the leaf 
according to (1), and cos(8 s) = - zOsd' where zOsd < 0 is the 
condition for reflection towards the ground surface. 

The average value of a 2 with respect to the leaf inclination 
yields 

(65) 

The volume-scattering per unit volume is then N < a 2(Z, ° i> ° J > 
i.e. 

The total two-bounce contribution per unit area ground is 
obtained by integrating (66) from z=o to z=h and 01 over 4TC. 

azO(oj) = fazv(z ,OJ,ol) dz = (LAI/hAoH'tl't3<'t2apq>dz = 

(67) 

Figure 4 shows as an example the avo and azo components of a 
canopy of opaque discs according to Eqs. (59) and (67). The 
probability density function p(hx' hy) of (31) is assumed Gaussian 
with rms slope m=O.4. 

Comparisons between the predictions of Figure 4 and measured 
data that are available at 95 GHz show a reasonable agreement. 
In particular, the inclusion of two-bounce scattering makes it 
possible to explain the cross-polarization response, which usually 
is about 10 dB below the co-linear ones. 

9. DOUBLE BOUNCES BETWEEEN LEAVES 

The technique developed above can be extended to the 
modelling of two-bounce scattering between individual leaf 
elements. The numerical difficulties will increase, however, 
because a double integration with respect to z is required. 

The leaf canopy is then divided into two thin layers of thickness 
dz 1 and dz 2• First, the two-bounce scattering between an 
individual leaf in the layer (Zl' Z1 + dz1) and the leaves in the 
layer (zz, Zz + dZz) are studied similarly as shown by (60)-(64) and 
(30)-(33). The two-bounce scattering matrix of (30) is modified 
as follows 



and the illuminated surface A of (31) and (32) is multiplied by 
a factor ke( nsd)~ adjusting that leaves in a layer of thickness ~ 
cover only a small part of the xy-plane. 

The probability density function p(hx ,~) of (31) now describes 
the distribution of leaf slopes and is obtained from p(nJ). 

The transmission distances of (62)-(64) are also modified 

r 1 = (h-z 1)/cos(6 i) (69) 

r 2 = (Zl-Z2)/cos(6s) (70) 

(71) 

The two-bounce contribution from layer (Z2, z2+dz2) and the 
canopy above (Zl = Z2 to Zl =h) is then computed from (61) and 
(67). The total two-bounce leaf-to-Ieaf scattering from the whole 
vegetation layer is finally derived by integration with respect to 
Z2 (from a to h). 

10. CORRELATION MATRIX 

10.1 Scattering matrix elements 

For distributed targets having a large number of subreflectors, 
of which no one is giving a dominating response, the elements 
of the instantaneous scattering matrix become random variables 
with Gaussian distribution and zero means. 

For a mono-static radar, the reciprocity relationship S21 = -S12 can 
be applied. The polarimetric statistics are then defined by the 
correlation matrix (3x3) 

C = <yy*T> (72) 

where 

(73) 

Hence, C is given by 

[ < I Sui'> <Sl1S12*> < Sl1S22* > 

<S12S11*> C < 1 S12 12> < S12S22" > 

< 822S11*> <S22812*> < 1 S221 2> (74) 

Computer calculations show that the normalized correlation 
matrix of double bounce scattering between leaves with spherical 
leaf normal distribution is given by 

[ 1.0000 
0.0000 -051 +iOOOOI8] 

C= 0.000 0.2432 0.0000 

-0.51-jO.0018 0.0000 1.0039 (75a) 

when €=4+j4, )..=3 mm, d=O.2 mm. 

The corresponding correlation matrix of two-bounce reflection 
between spherically distributed metal discs is 

C = [:::::: 

1.0000 

0.0000 

1.0000 

0.0000 

1.0000 ] 

0.0000 

1.0000 (75b) 

Let us also compare with the correlation matrix of two-bounce 
reflection between pairs of metal/dielectric discs 
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[ 1.0000 

C= 0.000 

0.52-jO.0010 

0.000 

0.7558 

0.0000 

0.52+jO.0010 I 
0.000 

1.0034 (75c) 

A comparison between (75a )-(75c) shows that the three different 
types of two-bounce reflections are clearly separated from their 
correlation matrices. They are also different from the specular 
one-bounce reflection, which for both metal and dielectric 
surfaces has a correlation matrix given by 

C= 
[ 

1.0000 

-:::::: (75d) 

0.0000 -:::::: I 
1.0000 

0.0000 

0.0000 

In particular, one-bounce and two-bounce scattering from 
metallic reflectors are easily separated from the different signs 
of the element C(1,3). We also have C(2,2)=0 (no 
depolarization) for one-bounce scattering. 

It should be denoted that for two-bounce scattering between 
spherically distributed dielectric discs according to (75a), the 
element C(1,3) has the same sign as for one-bounce scattering 
(75d). The reduced correlation between the co-linear responses 
and the non-zero element C(2,2) of (75a) indicate a significant 
depolarization, however. 

10.2 Combined model 

As shown above, the backscattering from vegetation contains 
both one-bounce and two-bounce components. The combined 
correlation matrix can be written as a weighted sum of the 
correlation matrices of the one-bounce and two-bounce 
scattering (C1 and C2) as follows 

C = pC1 + (1-p)C2 (76) 

where p is the relative amount of the backscattered power 
generated by one-bounce scattering effects. 

Hence, if a10 denotes the equivalent radar cross-section of the 
ground due to one-bounce scattering and a20 that of two-bounce 
scattering, the weighting factor p is given by 

(77) 

The matrix C1 is defined by (75d) and C2 has to be computed for 
the particular type of scatterers involved. 

As an example, C2 may be represented by an expression similar 
to (75a) for a dense vegetation canopy with spherical 
distribution of the leaf normals. 

10.3 Scattered wave 

The corresponding variances a/= < ElsEls* > and a/= < E2sE2s* > 
and covariances a12 = < ElsE2s*> of the scattered field 
components are given by 

a/ = < (811E li+ 812E2i)(Sl1Eli+ S12E2/> = < 1 Sl11 2> 1 Eli 12 + 

+ < 1 S12 12 > 1 E21 12 + 2Re{ < Sl1S12 * > E liE2t} (78) 

a/ = < (S21Eli + S22E2i) (S21Eli + S22E2Y > = < 1 821 12> 1 Eli 12 + 

+ < IS2212> IE2i1 2 + 2Re{<S21S22*>EliE2t} (79) 



0u = «SllEli+SUE2i)(S21Eli+S22E2i)*> = 

<Sl1S21*> 1 Eli 12 + <SUS22*> 1 E2i 12 

+ <SllS22*> EliE2i* + < SUS21* > E2iEli' (80) 

where Eli and E2i are defined by the polarization state of the 
incident wave. 

The complex correlation coefficient between the two 
components of the scattered field is obtained from 

where 
P = Re{oU/0102} 

j..L = -Im{ 0U/Ol02} 

11. PROBABILITY DENSITY FUNCTIONS 

(81) 

(82) 

(83) 

The scattered field Es = (Els' E2s) can be expressed in real and 
imaginary parts as follows: Eis = Xl + jYI and E2s = X2 + jY2. 

The probability density function of the scattered field 
components (Xl> X2, Yl> Y2) is then 

P(XI,X2,YI,Y2) = (1/41C2D2)exp{-(1/2D2)[0/(X1
2+ Y/)+ 

Ol(X2
2 + Yl)-2p OIOlXIX2+ Y1Y2)-2j..L010lX1Y2-YlX2)]} (84) 

where 

(85) 

The parameters 01' 02' P and j..L can be expressed in terms of the 
scattering matrix elements and the incident wave according to 
(78)-(83). 

As an alternative, Els and E2s can be expressed in polar form 

Eis = rlexpU61) 

E2s = r2expU62) 

(86) 

(87) 

The probability density function P1(r1,r2,61,62) is then derived 
from 

After introducing the Jacobian determinant, we derive 

Substitution of A6 = 61-62 and integration with respect to 62 
from 0 to 21C give as a result the following probability density 
function of the envelopes and phase difference of the scattered 
polarization components 

The polarization ellipse is defined by its rotation and ellipticity 
angle", and x, respectively. The polarization characteristics can 
be nicely described using the Poincare' sphere, where 2X is the 
latitude and 21J1 is the longitude; see Ulaby and Elachi (1990). 
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Linear polarization is mapped on the equator of the sphere 
(2X=0) with 21J1=0 and 1C corresponding to vertical and 
horizontal polarization, respectively. Circular polarization is 
represented by 2X = 1C/2 (left-handed) and -1C/2 (right-handed) 
i.e. the two poles. 

The rotation and ellipticity angles fluctuate strongly as a result 
of the randomness of the scattered wave. After introducing the 
ratio y=01/02' the average values of the rotation and ellipticity 
angles 1J1 m and Xm can be expressed as 

(91) 

(93) 

and the fluctuations of 1J1 and X are described by the probability 
density function p( 1J1,X) as follows (Axelsson, 1992) 

p(1J1,X) = T(1J1,X) / N(1J1,X) 

where T(1J1,X) and N(1J1,X) are defined as 

T(1J1,X) = 4(1 _p2 - j..L2) 1 cos(2X) 1 

(94) 

(95) 

N(1J1,X) = 1C {(y+ l/y)+ (1/y-y)cos(21J1)cos(2X) 

-2[psin(21J1 )cos(2X)-j..Lsin(2x)]} 2 (96) 

For 01 = 02 or y= 1, it is found from (94)-(96) that p(1J1,X) 
depends solely on X. This case occurs for circular polarized 
waves. 

Figure 5 shows some representative graphs of p( 1J1 ,X) for double 
bounce-scattering betweeen leaves for different polarizations of 
the incident wave. The corresponding responses from two
bounce scattering between pairs of metallic/dielectric discs are 
shown in Figure 6. 

Figure 7 displays p(1J1,X) of the combined response from one
bounce and two-bounce reflections as defined by (75d), (75a) 
and (76)-(77) for 01°=402°, which means dominating one-bounce 
scattering (p = 0.8). 

At the interpretation of the graphs, we should notice that one
bounce scattering gives strong peaks at the following angles: 

a) Ei=(l,O), vertical polarization: 21J1 = 0,2X = 0 

b) Ei=(O,l), horizontal polarization: 21J1 = 1C,2X = 0 

c) Ei = (l,j), circular right-handed polarization, gives 
left-handed polarization as response: 2X = rc/2. 

The corresponding two-bounce responses from metallic discs are 
given by: 

a) Ei=(l,O) i.e. vertical polarization: 21J1 = 0,2X = 0 

b) E j =(O,l) i.e. horizontal polarization: 21J1 = 1C,2X = 0 

c) Ei = (1,j) i.e. circular right-handed polarization gives 
also right-handed polarization as response: 2X = -1C /2. 

As shown by the graphs, there are significant differences in the 
polarization response P(1J1,X) for all the three cases. For circular 
right-handed polarization, the position of the ridge along the X
axis is a good indicator of the type of reflection. Hence, the 
metalj dielectric disc combination of Figure 6 shows a negative 
x-angle, the dominating one-bounce reflection of Figure 7 gives 
a positive x-angle, while the two-bounce reflections from 
dielectric discs (Figure 5) fall between. 
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Figure 1. Predicted distributions of the phase angle difference 
<i>vv-<i>HH between the two-bounce reflection coefficients (Svv and 
SHH) when the incident wave is scattered by a cloud of discs with 
spherical distribution of the normal directions (E = 4 + j4, A = 3 
mm, d=O.2 mm). 
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Figure 2. Examples of probability density functions of the leaf 
normal direction pen,). 
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Figure 3. Single-bounce volume backscattering (VV and HH) 
from opaque spherically distributed leaves (€ = 4 + j4). 
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Figure 4. Two-bounce backscattering components between 
spherically distributed opaque leaves and the ground surface. 
Single-bounce backscattering from the leaves is dashed. 
Computed from Eqs.(59) and (67) with IAI= 1, h= 1 m, m=O.4 
and Eg =EJ=4+j4. 
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Figure 5. The probability density function p(W,X) for double
bounce scattering between leaves with spherical distribution 
(E=4+j4, 1=3 mm, d=O.2 mm). Vertical polarization (top) and 
right-handed circular (below). 
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Figure 6. The probability density function p(W,X) for double
bounce scattering between pairs of metallic and dielectric discs 
with spherical distribution (E=4+j4, 1=3 mm, d=O.2 mm). 
Vertical polarization (top) and right-handed circular (below). 
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Figure 7. The probability density function p(W,X) of the 
combined response from one-bounce and two-bounce reflections 
as defined by (75d), (75a) and (76)-(77) for 01°=402° (one
bounce scattering dominates). Vertical polarization (top) and 
right-handed circular (below). 


