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Hans Werner
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Commission III .

Abstract: The theoretical foundation of robust estimators, which are unaffected by gross errors,

esented. A way is shown how to robustify the least squarss method against gross errors with
weight functions. Finally, some empirical results on the elimination of gross errors by robust
acdjustment, concerning horizontal blockadjustment with independent models, are shown.
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1'article suivant seront présentées les bases théorigues d'estimateurs robustes
de fautes. On montrera comment la ”ampnnsatian suivant la m@thode des moindres

tre rendue robuste & de fautes par 1'introduction de fonctions de poids. On ex-
pliguera queiques résultats de recherches préliminaires empirigues pour &11 iminer de fautes par
une compensation robuste & 1'aide de la compensation planimétrique da blocs avec des modéles
independents,

b

INTRCDUCTION

Since it is possible in geodesy, by application of efficient ¢

omputer programs, to treat large
data-sets in Least-Squares-Adjustmenis, the automatic gross error detection has become more and
more urgent, because manual error detection in such cases is iengthy and difficult.

The recent error-searching-methods in three steps of mathematical modeiling, aéjustmentg and

oF

test of the results presuppose a certain statistic distribution (normal distribution at most)
of the data. But this assumption is not fulfilled if gross errors exist, so the statistic tests

may fail sometimes.

A

A possiblie way out

gross errors. This
of well-known methods.

t unaffected by gross errors.

We will call any method as robust, when it allows to get a resu
ation of the residuals,
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The iterative manual procedure of e n
rejection of observations and new adjustm&ni is in this meaning 2 robust method. Contrary to

that, however, robust adjustment should be fully automatically, without any manual operations.

At this point we can consider as the main aim of robust estimation:
1. 1isolating clear outliers,
2. building in safeguards against unsuspectedly large amounts of gross errors,

3. putting a bound on the influence of hidden contamination and guestionable out
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4, still being nearly




he detection of very large gross errors and error clusters has to be done by means of plausi-
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bility controls, for example sequential methods 1ike searching for groups of correct obse
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(see Weller, 1982). Medium gross errors can be eliminated. by robust adjustment (Werner, 1582),

{ g \ ]
o

while small gross errors can be detected with (statistical) tests (Klein, Forstner, 1981). Since
the used robust estimator is sensitiv enough, it is under favourable circumstances no longer
necessary to subseguently test the results of a robust adjustment, because a robust estimator

can operate for small gross errors like a statistical test.

First of all, we will reflect upon the Least-Squares-Adjustment in the next chapter in a more
general frame.

2. ESTIMATION OF UNKNOWN PARAMETERS

With a given sample (e.g. photogrammetric model coordinates), taken from 2 population, unknown
parameters are to be estimated. A stochastic and a functional model is necessary in order to
estimate these unknowns by means of an estimation function. With this estimator we get approxi-
mations of the unknowns. These approximations are in a sense optimal, depending on the actual
purpose of the estimation method.

Starting with the observation eguations

: h
T+v = AX or T,+v, = I a,.%X. 3 i=1...n
L1 4=1 33
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the Least-Squares-Adjustment (Gauss-Markov-Model) will minimize the weighted sum of the
residual squares:

- n h 5 n 2
v*Pv = min or tp, (1.-% a, x,)°= % p.vi=min (2.2
., 1 i, i3 3 i i \ &)
i=1 =1 i=1
which leads to the normal equations
T T n n A oAy
A'PAX-A'P1 = 0 or Top (-2 tagxa =0 5 J=lon (2.3)
.=l Cok=1 -

The solution is called Least-Sguares-Lstimation of the parameters

. B
x = (ATpa)~"aTP (2.4)
and of the adjusted observations
3 ATA#\-iﬂT 1 { 5
1 = A(APA) A'P] (2.5}

estimation method, defined
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This method may be understood as a special case of
as follows:

B . N ~ . ~ e c L N PO
"rach estimation function &_, defined by a minimum problem of the form
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To robustify the Least-Squares-Method for practical application we use variable observation

weights. In the case of ordinary Least-Squares-Adjustment we minimize:

n

t p(v.,) =min {see eq.(2.8)) (3.1)

=t e
with

s 2

s{v.} =

PV = By Yy (3.2)
where the weights p; are constant during the whole adjustment. For Robust-lLeast-Squares-
Adjustment we choose weights as a function of the residuals vy :

o(v.) = p(v.) v2 (3.3)

i 4 i i

The first step of iteration is a conventional Least-Squares-Adjustment with constant weights.
New observation weights are computed from the residuals of the previous adjustment. With these
new weights a next adjustment is started and this procedure is repeated 5...20 times. At last
observations contaminated with gross errors obtain the weight p =0 and their residuals are

et al, 1980, p. 373 and Werner,

a measure for the magnitude of the gross errors (sse Kraru
1982, p. 18) .
In order to gain such weight functions {vﬁ) we have two alternatives:
1 ~had A Frne+A YA BlyY = 2 0lyvi/5 and dardvati AF
1. choice of a function olv) or Yiv)=230o(v;/3v and derivation o1
a weight function by transforming with egq. (3.3):
C’{'V\’ /r\. \
p(v) ===+ ; <<l 3.4
vosC
(¢ i a small constant to avoid division by zero in case of exactly v =0;
see Krarup, 1980, p. 378). -
2. choice of a weight function p(v) and verification of it's robustness with
S o
eq. (3.3) and eq. (2.8).




fay ~ {3 8%
oiv) = | 3 OiGiL 23
Yoo i - ER-
v(v) = sign(v) q |v| &~V (3.8}
1

v i N
D(V) - T~TT3:_T_“ H << {7y
v q’+c (9.7

e
Mwﬂ

g=
23
- 12

/10
;ﬁ§$5555;¢h,
= e

-1y
s
u

For q=1.2 the conditions (@ and @ are nearly fulfilled, but not the other ones (only
poor robust characteristics). For g=1 all errors cause the same influence, independent from
their size. Finally for g=2 we get z non-robust Leaét-iquares-édjustment with constant

- weights, wherein the influence of an error on the adjustment results grows proportional to

the size of the error.

While under the Minimum-Norm-Method the weight functions are independent of the number of
iteration steps and of precision of observations, under the Danish Method {see Krarup et al,
1980, p. 374 or Krarup/Juhl, 1983, p. 132) the weight functions are controlied by the global

precisiocn o and the number of iteration steps:

P . . 3 0%
first iteration: p =1 (3.8)
nd ; 2rd s / 2V A4, (3.9
2" and 37 iteration: D= exp{-ﬁ,ﬁsggj ) {3.9)
- . . . v,3.0, y
following iterations: p = exp(-0.05(=)""") (3.10)
If we generalize the eg. (2.9) and eq. (3.10), we have
p; = exp{-o vl (3.11)
with
1 . 1 (3.12)
& =3 K [
v, Yr.ooo, k
Py
and .
’ 3
kK= ki——] ; min,max{k) = 1.¢, 6.0 ¢, estimated precision |
o
© £2013)
) Ei‘ (3.13)
d = d{——) ;  min,max(d) = 1.0, 10.0 S, o_-a=priori s




The new weights are dependent of the residuals v,, their precision c, and the ratio between
- 1
estimated precision G_ and o -a-priori (Werner, 1982, p.20 and p.50) . Since eq. (3.11) leads

fast to very small weights, Werner (1982, p.20) usad besides the exponential weight

functions 2g. (3.11) a hyperbolic function:

1

p:—-—-——-——‘——_ 3 14\
(s v])° (3.14)

The influence functions, belonging to eq. {3.11) and (3.14), are fulfilling the conditions
T - © (see above), or differ from them only slightly. Therefore sufficient robust charac-

teristics are reached, as shown in the next chapter.

In order to gain an unobjectionable Least-Squares-Solution, at the end of the rcbust adjustment,
gach observation with weight P, less than a beund p_, will be eliminated by setting the weight
to zero: p,=0. The observations with weight p, greater than the bound Ps will be used in

ot

he last Least-Squares-iterationstep with their a-priori-weight:

M), oL (w1
P, <Py : P =0 (3.15)
pgv)z p, ¢ p§v+l) = p, - a - priori - (3.16)

(v+1): last fteration step

The experimental program SNOOPY (see Werner, 1382), which enables a robust block adjustment
with independent models for photogrammetric horizontal blocks, was written to demonstrate the
practicability of & robust adjustment for the elimination of medium and small gross errors.

A few experimental results are presented in the next chapter.

4. APPLICATION TO HORIZONTAL BLOCK ADJUSTMENT WITH INDEPENDENT MODELS

The horizontal block adjustment has been chosen, because it is significant twice for photo-
grammetry: at first it enables to compute the horizontal cocordinates in a two-step block adjust-
ment (horizontal/vertical); secondly the horizontal block adjustment can sarve to compute

approximative horizontal coordinates in a one-step block adjustment with bundles.

Three questions had to be answersd fo realize a robust adjustment with the program SNOOPY:
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Only a few results of the investigations concarning these guestions can be presented here,

for further details see Werner (1882).

The parameters in eq. {3.11)-(3.
stment. The assential probl
s ]




the parameters from the adjustment probiem and from actual data could not be obtained.
i
o results
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b GA : g 8 = 3 s 8 ° Tt ] the re 1+s of
S B S 5 IE e =N Table 4.1 contains tf sults of
m 2.5 @ e 1= e S5 s robust adiyst = - B
285 12 R 3122 robust adjustment concernihg three
o] LT g =10 @ - =t DU Ll Rl 15E : : a9 P
S - DA - S oiglvis ez different horizontal blocks with
3 g e e e e 2 s 8 u.€>:u 8 3 . ber of E a
g S RTN I-R - E R - increasing number of points per
. el %) d 7 -
|8 L8521 5 5wlsalsdls?® model {columns 2 and 3 ).
S weElae]l &2 Lwvwifwe 8 L|oE L .
213 " 15155 §2IS5C|E5IEQ Each block has been adjusted wit
) a I~ VAol Ce- c colcoicujc~ R . i
- - and without consideration of geo-
10 2 3 4 5 6 7 8 g 1C )
- metry by means of redundancy
Al 0.22 | ves 10 22 S 1 4 5 ) \
A2 no 23 | - - 110 110 numbers r. {see col. 4).
Bl1| €& jo.31! yes g] 14| 9 - 1 1
52 no 20 8 1 i 2
C1i1n1510.46] yes 7 Bi 7 - - -
L2 no 13 7 - - -

The horizontal block adjustment with independent

However, strictly viewed the observation
nected by a product:
alxi+v 2] + D{x%+v 2) + -
b{xtrvia) +alxiev o) + d -
with the observations xi, x2 :
and the unknowns y?!, y? :

a,b,C,d:

Therefore we have to iterate and must use approximation values for

i
L

ordinary lLeas
iter

t-Squares-Adjustment

rations will be ended, if the maximum

converg

e
oo

treated as a linear p

models is normally roblem.
eguations are nonlinear, because the unknowns are con-
yt =10

5 (4.1}
ye =0
measured modei coordinates
adjusted ground coordinates
transformation parameters
the unknowns. In the case of

es after thre tionsteps at most. Usual the

addition to the coordinates is less than

a given bound {convergence) or if the addition will grow (divergence). Concerning the robust
adjustment the maximum addition may vary by reason of different weights per iteration step. In
this case the addition is not able to show convergence or divergence.

Hence we have to change the end-of-iteration-question:

1. In the case of robust adjustment 33 will converge, because after each iteration step
more gross errors will be eliminated. As long as the estimated weight unity &, is larger
than the gy-a-priori, the iteration shall be continued.

2. Asconvergence criterion the additions must be standardized by their precision:

;13;"(-;5 A
X = max B (4.2}
max j ¢ o, /
AX,
J
3. The minimum and maximum number of iteration steps should be ordered by the operator,
The number of false decisions increases with increasing number of iterations, as shown in
table 4.1, column 5 and 10. By reascn of the poorly defined boundary between small gross errors
and large random errors the end of {terations is problematical (see Klein, 1984).
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As table 4.1 shows, the density of points per model is essential for the gross error elimination:
the larger the (average) redundancy numbers, the better are gross errors eliminated (table 4.1,
col. 3,6,10). At the same time it is more and more important to use redundancy numbers, the fewer
points a block has and the Tess homogeneous the observations are distributed. This was verified
for photogrammetric measurements only, but it is certainly valid also for geodetic net adjust-
ments. .

The computation of redundancy numbers causes organizational and econcmic problems (e.g. computer
storage is limited, costs for computing time...), and so in practice we have to choose between
two alternatives: to invest time and money in the program to compute the redundancy numbers

or to optimize the measurements and observation design.

5. CONCLUSION

As shown above the brdinary Least-Squares-Adjustment can be made insensitive (robust) against
gross errors by means of weight functions and can thus be used to identify and eliminate out-
Tiers. After such robust adjustment automatically the weight of the remaining observations will
be set to their a-priori-weight, whilst the weight for outliers is set to zero. With such weightis
the final Least-Squares-Adjustment will give the strict Least-Squares—Soiutions. However, the
choice of parameters for the weight functions and the number of iteration steps in the robust
adjustment is still problematic.

From a computer program for robust adjustment we get only preliminary decisions, for the im
being. The final decision, to accept the results of the automatic gross error detection, is
sti11 to be made by the operator.

The method proposed above describes the stage reached in the middle of 1983 and has been inte-
grated and further developed in the block adjustment program PAT-M 43 without consideration of
redundancy numbers by H. Klein at the Photogrammetric Institute in Stuttgart (Fﬁrstmgr W, and
Klein H., 1984). First results have been demonstrated in fall 1983 at the 39th Photogrammetric
Week in Stuttgart, moreover Forstner W. and Klein H. submitted new results as a Presented Paper
at the XVth International Congress for Photogrammetry and Remote Sensing in Rio de Janeiro.

Férstner W., Klein H. (1984): Realization of Krarup, Juhl (1983); The Danish Method; Ex-
Automatic Error Detection in the Block- perience and Philosophy. Deutsche Geod&-
Adjustment Program PAT-M 43 Using Robust tische Kommission, Reihe A, Heft 9§,
"Estimators. XVth [SPRS uonarﬂss, Rio de Munich 1983
Janeiro, 1984 Rey W.J.J. (1983): lIntroduction to Robust and

Hampel F.R. (1973): Robust Estimation: Quasi=-Robust Statistical Methods. Berlin
A Condensed Partial Survey. Z. Wahrschein- 1983
lichtkeitstheorie, 1972 wWeller M. (1982): Automatische Suche groher

Huber P.J. (1981)}: Robust Statistics. Fehler in LagebliBcken. Diplomarbeit at the
New York, 1981 Photogrammetric §n<*1tuta; Stuttgart Uni-

Klein H., Férstner W. (19”'): Strategien zur versity 1982, not published
Suche grober Fehler. togrnw metric e e . ’/,58 Robuste Schitz
Institute, Stuttgart un. ersity, Schrif- Werner #. (1582): Robuste schatzer zur

automatischen Suche grober Fehler bei
der Lageblockausgleichung mit unab-
héngigen Modellen. Diplomarbeit at
the Photogrammetric Institute, Stutt-
gart University, 1982, not published

tenreihe Heft 7, 1981

Krarup, Juhl, Kubik (1980): GOtterddmmerung
cover Least-Squares-Adjustment. XiVth 5P
Congress, Hamburg 1980




	S42BW-110011808060

