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Abstract

This paper gives a review of the concept of "gross errors", their causes
and the methods of elimination. In particular, the interrelationship of
"gross errors'" with the method of least squares is discussed. Test theory,
variance estimation and robust estimation techniques are reviewed as reme-
dies for the phenomenon "gross errors".
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1. WHAT ARE GROSS ERRORS?

What are gross errors? There are mainly the following explanations,
which combined give the answer.

Often, in adjustment, one is using very simple probability distributions
for the errors, such as normally distributed errors. Classical statistics
derives results under the assumption that these models are strictly true.
However, these models are never exactly true.

Deviations from these models may be due to the occurance of blunders in
measuring, wrong decimal points, wrong point numbers, errors in copying
or because just "something went wrong”. These "gross errors" may occur as
clean outliers or as "hidden contamination” which usually cannot even be
detected. Their fregquency depends of course greatly on the gquality of the
data, but some figures may be reveiling.

The raw data in photogrammetric blocks involve typically about 1-5% of
the beforenamed gross errors, mainly errors in point numbering, and er-
rors in the identification and measurements of tie points. The Geodetic
Institute of Demmark reports for small-scale (1:140.000) bundle adjust-
ments in Greenland that the gross error frequency is 2%, with 0.5% point
numbering errors, o©.5% ground control errors and 1.0% sloppy or errorness
transfer cf tie points. In the mainland of Denmark the error frequency is
much lower, with practically only point numbering errors occuring. Among
the reasons for the lower frequency in the mainland are larger scale and
presignaled, high quality ground control.

The error model (normal distribution) may also be only an approximation
anyway. Even high-quality samples in astronomy and geodesy, consisting .
of several thousands measurements each, which should be prime examples
for the "normal law of errors", proved to be mildly but definitely lepto-
curtic (longer-tailed). This means that large errors occur more frequent
than explainable by the normal distribution. .

There are a number of examples known showing these longer-tailed distri-
butions, including the large ones in Romanowski and Green (1965) and the
old ones by Bessel (1818). The Geodetic Institute of Denmark reports for
typical geodetic triangulation nets with 10.000 observations and 5.000
unknowns, that large residuals cccur 10 times as frequent as explainable
by the normal law of errors (50 large residuals versus 5, after elimina-
tion of blunders).The deviation of the distribution from its simple ap-
proximation tends to be explained by "gross errxors", which then are re-
jected. Gross errors due to film distortion and refractive influences are

popular in photogrammetry.

Gross errors, causing even slight and harmless-looking deviations from the
distribution model render classically "optimal" procedures such as least
squares adjustment rather inefficient and bad. The first basic reference
here is Tukey's (1960) survey paper on early research at Princeton Univer-
sity. A lot of experimental evidence is also contained in Andrews et.al.
(1972), who shows how bad even the arithmetic mean might be for distribu-
tions slightly deviating from the normal.

The question arises, how practical people could get along until now with
least squares estimators such as the arithmetic mean, or least squares
block adjustment procedures in photogrammetry. Small avoidable losses by

the inadmissible use of these procedures will have gone entirely unnoticed.




Also, the habit of "throwing away" any strays before doing least squares
adjustment is rather common.

However, there is an increasing danger in that more and mcre data are
automatically processed on a computer without being looked at by a
competent person. Indeed, some users of least squares adjustment have
recognized this danger. Feeling the urgent practical need to suppress
unwanted outliers in their computations, they robustify their program-
mes against gross errors on their own, using intuitive, trial and error
procedures. (Masson d'Autumn, 1971).

Sometimes, it is objected, that results of mathematical statistics, like
the Gauss-Markov theorem, yield the arithmetic mean as optimal even if
nothing is known about the error distribution. In such cases the fallacy
lies in assuming, that we always want to estimate the expected value of
the observations, however wrong they might be. (We rather want to esti-
mate roughly some central value in the bulk of the data). And even if

we impose symmetry of the distribution function and existence of its
mean and variance, then the conditions under which least squares is an
optimal method, linearity and unbiasedness, are far too severe restric-
tions and of doubtful value anyhow.

2. THE DOGMA OF NORMALITY

The dogma that measuring errors should be distributed according to the
normal law is still widespread amongst users of the method of least
squares. We should remember, however, that the whole theory of estima-
tion, and in particular the least squares method, originates with pro-
blems where almost all of the statistical variability is due to measure-
ment errors only.

Statistical variability is regarded as just a nuisance to get rid of, and
one is mainly interested in finding that combination of the measurements
which lies on the average nearest to the true value.

It is illuminating to witness how the normal, or Gaussian, distribution
was introduced by Gauss himself. We gquote Gauss (1821):

The author of the present treatise; who in the year 1797 first
investigated this problem according to the principles of the
theory of probability, soon realized that it was tmpossible to
determine the most probable value of the unknown quantity, unless
the function representing the probability of the errors is known.
But since 1t is not, there is no other recourse than to assume
such a function in a hypothetical fashion. It seemed most natural
to him to take the opposite approach and to Look for that function
which must be taken as a base in order that for the simplest of all
cases a rule ts obtained which is generally accepted as a good one,
namely that the arithmetic mean of several observations of equal
accuracy for one and the same quantity should be considered the
most accurate value. his implied that the probability of an error
X must be assumed proportional to an exponential expression of the
form e~hhxX, and that then just the same method which he had found
by other considerations already a few years earlier, would become
necessary in general. his method, which aftervards, in particular
stnee 1801, he had almost daily opportunity to use in diverse astro-
nomreal computations, and which in the meantime also Legendre had
nappened upon, now ts in general use wnder the name method of least
squares,
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Note that Gauss here introduces the normal distribution only to suit the
sample mean.vMoreover, one can hardly claim that the method of least squares
was universally accepted, as Gauss did. Laplace (1793) and others proposed
the method of least sum (see chapter 5) instead, and there is a charming
contemporary paper (Anonymous, 1821), which states:

"...The popular method (of least squares) has neither generally
been followed nor has it been used without restrictions. For
example, there are certain provinces of France where, to de—
termine the mean yield of a property of land, there is a cu-
stom to observe this yield during twenty consecutive years,

to remove the strongest and the weakest yield and then to take
an eighteenth of the sum of the others'.

The author then continues to remark that a considerable arbitrariness
is involved here: Why should one not exclude the two greatest and the
two smallest observations? But nevertheless he does not believe that
all observations should end with the same weight into the determination
of the mean.

The concept of "gross errors" is thus closely related to the assumption
of normally distributed errors and the method Of least squares. Also the
concept of "systematic errors" is related to the abovementioned con-
cepts, and all these concepts are interchangeable, as can be seen from
the following historical example:

In early photogrammetric strip triangulations, coordinate errors or
"strip deformations" seemingly showed a linear dependence on strip
lenght, but with unexplainable sudden changes roughly after every 6th
model. These sudden changes were explained as "gross errors" of the
operators. It was von Gruber (1935), who later explained these strip
deformations as due to "systematic errors" in the triangulation instru-
ments, superimposed by some random effects; the era of polynomial strip
adjustment and the search for systematic instrument errors was started.
The era lasted until Vermeir (1954) and Ackermann (1965) demonstrated

in a convincing manner, that strip deformations may also be explained

by a double summation of normally distributed random errors. This started
the development of the'"anblock " method (Hout, 1966) and made the earlier
concepts of gross errors and systematic errors in strip triangulation
redundant. ‘

Also in recent times, we notice similar developments. In the early 1960's
photogrammetric bundle adjustment was introduced and propagated as the
final solution to photogrammetric triangulation. But quickly it was rea-
lized that corrections to the assumption of normality had to be allowed,
and "systematic image errors" were introduced (Schmidt 1971, Masson
d'Autumn, 1971). These systematic errors were originally valid for the
whole block, later varied from strip to strip and even from image to image.
Finally, the concept of "gross errors" was necessary to explain the re-
maining discrepancies from normally distributed errors (GrtGn, 1980).
Extrapolating history, we may expect as next step totally novel photo-
grammetric adjustment methods, based on other models.

Modern theoretical developments in statistical estimation methods can
guide us ahead, leaving behind us classical least sguares and the as-
sumption of normal distribution. After treating the classical "random
errors” of "equally good" observations (only due to small measurement
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errors or to.inherent variability of the material), and after, to some
extend, controlling "systematic errors", theory finally started to deal
explicitly with "gross errors" and contaminated distributions. The mathe-
matical tools have improved, and owing to the development of computers

and Monte Carlo simulation methods, statistics now is a part of the ex-
perimental sciences, where different (non-least sguares) adjustment methods
may be studied experimentally as to their efficiency, as evidenced by the
book of Andrews (1972).

But we are only at the beginning. We know a lot about modern and new
estimation techniques, and we still discover many open questions there.
We badly need more and better techniques for finding accuracy parameters,
to make more estimation methods practically useful. Much still has to be
done.

3. REJECTING GROSS ERRORS - THE CONSERVATIVE APPROACH

Photogrammetric engineers safeguard themselves against "gross errors"
since long. Knowing from experience about the devastating effects of
gross errors on least squares adjustment, they use arial triangulation
methods, which enable the detection of deviations from normal distribu-
tion ("gross errors" and "systematic errors") in an early stage of tri-
angulation. At first, photogrammetric models and strips are formed, which
enables the detection of a large part of the undesireable effects. Then,
strips are adjusted and joined together into a block assembly by simple
means, again controlling the discrepancies found and rejecting or re-

viewing suspecious data.

Finally, the block adjustment is performed using conservative ground
control arrangements to allow the detection of errors in the ground con-
trol. In this manner, praxis rcbustified the compulations against deviat-
ions from normality. The problem of blunders and systematic errors became
again enhanged by the introduction of high accuracy instruments, high per-
formance least squares block adjustment methods without precedings model -
and strip formations, and by the use of - theoretically justifyable - sparce
ground control arrangements.

One way of tackling gross errors is to reject all errors, which do not

fit into the assumption of normal distribution. The matter is complicated
by the fact, that we only know estimates of the errors after least squares
adjustment, where gross errors have been smoothed and distributed over
many observations, and thus are difficult to recognize. Also, the largest
residuals do not necessarily indicate the correct location of the blunders
(for demonstrative examples see Criger et al, 1984 in this volume).

To localize a gross error, the estimated magnitude, &,, of each error e,
is tested whether it deviates significantly from 0. THe test statistic
used is the normalized residual

=
e oo L1 (1)

which is Student t-distributed with 1 degree of freedom. The symbol 0.

denotes the standard deviation (mean square error) of the error estimate ,

€ and it may be calculated in the course of least squares adjustment. On- .
ly the (locally) largest significant errors are rejected as probable gross
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errors and 'the adjustment and test is repeated, until no further gross er-
rors are located.

The test (1) is a well-known tool of classical statistics (cf. Wilks 1962),
and it has been propagated and modified for geodesy by Baarda (1968) and
Pelzer (1976). Today, many variants exist, cf. El Hakim (1981) , Stefano-
vitz (1980) a.o.

A simple example may illustrate the method:

Consider the mean value to be estimated from
the sample Z, = (10,11,11,12,100) with standard (2)
deviation OZ = 1 unit.

i

The computations for this example are summarized in table (1). This example
shows the importance of only rejecting the most significant residual, since
all residuals are significantly larger than the treshold value in the first
computation cycle.

sample Z: 10 11 11 12 100 z = 29

1° residuals|&]: 19 18 18 17 71 | o%= 4/5-62

cycle €
nomalized 21 20 20 19 79 |t .= 6.7 &y e
residualslé!/cé 5%,1 °° max(cé) a=5%,1

indicates blunders

sample Z: 10 11 11 12 - |z =11

2° residuals|&]: 1 0 0 1 - |o%=3/4-02

cycle €
normalized &
residuals}é}/cé 1.2 0 0 1.2 'tS%,l_ e all(gjk ta:S%,l

e

Table 1: Test for gross errors.

Pitfalls of the method are:

- the test is one-parametric, i.e. only one gross error is detected
within each computational cycle, and wrong decisions about the ex-
clusion of observations increase in probability with the number of
gross errors in the data;

- gJgross errors remain unnoticed with relatively high probability. Wrong
decisions in the rejection/acceptance of gross errors seriously effect
the mean estimates;

- no simple accuracy expressions are known for the resulting mean esti-
mates, including the risk of wrong decisions. The concept of reliability
was introduced by Baarda (1968) in addition to the conventional accuracy
parameters. Reliability describes, with which probability gross errors
of different magnitudes still may be present in the adjusted results.
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Praxis, however, requires unique and simple accuracy statements and con-
fidence limits for the results instead of two or more unrelated quan-
tities;

- the accuracy oz should be known a-priori in order to make testing pos-
sible.

Extension of the test theory to a multiparametric theory and the devia-

tion of unigque and simple accuracy statements is very difficult and com-
plicates the usefulness for photogrammetry. It is our feeling that test

theory has reached its practical limits of applicability and other ways

have to be followed to tackle the phenomena "gross errors".

4. ARE GROSS ERRORS NORMALLY DISTRIBUTED?

Another approach of tackling gross errors regards all observations z, as
normally distributed, but with different variances. In this model, al"gross
error" is interpreted as normally distributed observation with a very large
variance. We assume the variances of the observations to be unknown, and
they are estimated together with the other conventional unknown in the
adjustment. The variance of the individual Observation z, may in principle
be estimated from the residuals (-e) after adjustment, using the following
formula:

52 = &° (3)

The least squares adjustment is repeated with the newly estimated variances
of the observations and weights

P = 32 + ¢ (€ small constant)

until the results converge. Samples with very low weight are then interpreted
as "blunders". Estimation formula (3) gives highly biased estimators for &2

and should preferably be modified before use (cf.Kubik, 1967). 2y

This method of variance estimation was for the first time proposed by
Helmert (1924) and further elaborated by Kubik (1967 and 1970) and Eb-

ner (1972). The method was independently proposed in statistical litera-
ture (Rao, 1977) and since then periodically rediscovered (FSrstner, 1979,
Li, 1983, a.o.). The method was successfully applied for variance estima-
tion in geodesy, estimating the weights for different types of observations,
but very little experience is gathered with the location of gross errors.

Table 2 summarizes the application of the method to example (2). The mean
estimate stabilizes at 11.97 after 8 iterations.

Critical points in the method are:

- the measuring accuracy should be known a-priori, and the weights should
not be allowed to increase above the corresponding a-priori weights,
otherwise the method proceeds tc exclude observations until only a mini-
mum number of samples remain, necessary for an unique determination of
the problem.




- confidence limits are not known for the solution. Maximum likelihood
theory provides us only with asymptotic confidence limits, which are
equal to the accuracy results of conventional least squares. But these
confidence limits are only approximately valid for many repetitions of
the individual measurements and are not useful for actual cases of pho-
togrammetric adjustments (cf. Kubik, 1970).

Further work on these methods seems possible and useful, in particular on
improvement of the variance estimate (3) and on confidence intervals.

weights weighted residuals
Sample no| 1 2 3 4 5 mean 1 2 3 4 5
1%cycle 1 11 1 1 29 19 18 18 17 71
2%ycle | 0.03 0.03 0.03 0.03 0.0002 12.4| 2.4 1.4 1.4 0.4 87.6
3°ycle | 0.17 0.50 0.50 5.4 0 11.8|1.8 0.8 0.8 0.2 88.2
4%cycle | 0.3 1.5 1.5 19.8 0 11.8|1.8 0.8 0.8 0.2 88.2
5°%cycle [ 0.3 1.4 1.4 28.4 0 11.9

Table 2: Variance estimation (¢ = 0.01)

5. ROBUST ESTIMATION - REJECTING NORMALITY

It would be ideal to have estimation methods, which would always yield
nearly optimal results, independent of the actual error distribution.

In particular, the estimators should be uninfluenced by large errors and
the estimators should be constructed as central values of the bulk of
data.

This concept of robust estimation was formally defined by Kendall (1948),
although it was used already by Laplace in 1793, who proposed to use the
median (central value of observations ordered according to size) as an
estimator of the mean. The concept of robust estimation was especially
developed at Zlrich University by Huber (1964) and Hampel (1973)

and at Princeton by Andrews et al (1972). For application of these methods
to geodesy refer to Carosio (1979) and Borre et al (1983).

The characteristic for these methods is, that not the square of the errors
is minimized, but another properly chosen function

ZQ(e) = min (4)
A simple example is @(e) = abs(e) (least sum method), leading to the estima-
tion of the mean by the median. At present, there exist many proposals for
the choice of the function @(e), (Andrews, 1972 ; Rey 1978), but a unifying

theory for classification and comparison of these methods is still lacking.
Only one thing is quite clear: the method of least squares is inferior to
all robust estimation methods for errors deviating from normal.

The numerical solution of the adjustment principle (4) may be done itera-
tively, by successive application of the method of weélghted least squares.
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The iteration starts with the apriori given weights of the observations

and a conventional least squares adjustment. (assume for the moment all

observations have the same weight). In the next iteration new weights p

are computed for the individual observations from their residuals in the

foregoing adjustment, and the least squares method is repeated with these

new weights. The weights p of the individual observations follow from (4)

to :

x ) )

ple) = 5—‘/e (5) .

The iteration continues until convergence is achieved (usually 3-20
iterations are necessary). For our example @Q(e) = lel| and for Hubers
method the weights are:

%

least sum method: : (6a) |
p(e) TE%IE ¢ small constant

Hubers method: (6b)
1 for iex/cf a
ple) =
2
!EUG ﬂm!evc>a;a= 1.5

with ¢ denoting the estimated or apriori standard
deviation of the observations.

The least sum method was applied to estimation problem 2, the results are
summarized in table (3). The mean estimate is 11.01 after 20 iterations.

weights welighted residuals
Sample no. 1 2 3 4 5 mean 1 2 3 4 5
1%cycle 1 1 1 1 1 28.8 19 18 18 17 71
2°cycle | 0.05 0.06 0.06 0.05 0.01| 16.2 |6.2 5.2 5.2 4.2 83.8
3°%cycle | 0.16 0.19 0.19 0.23 0.01| 12.4 |2.4 1.4 1.4 0.4 87.6
4%ycle 0.4 0.7 0.7 2.2 0.01| 11.7 1.7 0.7 0.7 0.3 88.3
5%ycle 0.6 1.4 1.4 3.5 0.01| 11.5 1.5 0.5 0.5 0.5 88.5
6%cycle | 0.6 1.7 1.7 2.4 0.0l 11.4 1.4 0.4 0.4 0.6 88.6
|

Table 3: Least sum eétimation of mean (¢ = 0.01).

Note, that blunders are successively weighted down, while correct observa-
tions equally contribute to the final result, although they may have been
welghted down temporarily in some of the iterations. Weights should not be

N
. . 3P(e) .
*)} By rewriting the "normal equations", & EEACIN = 0; x unknowns; in form of the conventional normal squacions

5x
_ 30(e)

“Ip(e) e = 0 these weights ple) follow to ple) = w(e)/e = e /e
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allowed to- increase beyond the initial values to avoid preferance of a few.
accidental sample wvalues.

In the Danish Method (Krarup 1967, Krarup et al 1980, Kubik 1982) the un-
knowns are estimated from the bulk of consistent observations. Outliers
which (hopefully) are in minority, are rejected. The Danish Method may

be regarded as robust estimation method with weights

1 for lel < 20

p(e) =

lel?

20°

exp (- ) for lel > 20

Table (4) shows the application of the Danish Method for our estimation
problem (2).

weights weight. residuals
Sample nqg. 1 2 3 4 5| mean 1 2 3 4 5
1%cycle 1 1 1 1 1| 28.8 |19 18 18 17 71
2%ycle |1.7°10777 1.6°10769 1.6-10769 5.1°10-62 0| 12.0 | 2 1 1 O 88
3%cycle 1 1 1 1 ol 11.0 |1 0 0 1 89

Table 4: Mean estimation by the Danish Method.

The Danish Method has favourable properties as compared to other robust
estimation methods, both with regard to blunder detection and speed of
computation. It is used as standard adjustment method both at the Danish
Geodetic Institute and Aalborg University. At the Geodetic Institute the
method is regarded as a mean to produce a list of candidates for further
inspection and/or remeasurements. Actual rejection is only done after human
inspection. After this screening rigorous least squares adjustment is per-
formed.

For a detailed review of the robust methods and examples of applications
refer to the paper of Crlger et al (1984) in this volume and to Criger
and Kubik (1983).

Critical points of robust methods are:

-~ the measuring accuracy should be known a-priori, and the weights should
not be allowed to increase above a pregiven maximum, otherwise the me-
thod proceeds to exclude more and more observations;

- no simple confidence limits are known for the solution. The theory for
confidence limits is given in Andrews et al (1972), but this theory must
still be further elaborated and expanded in order to obtain simple accu-
racy parameters suited for praxis.

2

Robust estimation seems the most promising alternative for tackling "gross
errors". There is already a wealth of theoretical and experimental experi-
ence available with the use of these methods, and large efforts are made
by statisticians to further elaborate the theory of the methods.




6. WHICH WAY TO GO?

Having visited the various aspects of gross errcrs, we may conclude that
gross errors do not exist as independent entities. They are indivisibly
connected with the dogma of normal distribution and the method of least
squares. In future we may go two ways: either accepting the method of

least squares and thus also gross errors, or chosing new adjustment methods,
in which case both the concepts of least squares and gross errors vanish.
The choice may be simplified in that formally both ways have many aspects
in common, although they are based on quite different theories.

In any case, the guestion of proper confidence limits has to be solved.

For all methods, we lack proper and practically applicable confidence limits
for the results of photogrammetric adjustment. This leaves enough chances

to a new generation of photogrammetrists to become reknown.
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