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1. ABSTRACT:

The program system CRISP for the Kern analytical plotter

DSR=-1 includes a bundle adjustment technique with data
management and an interactive dialogue. The mathematical model
and applications are described of an unconventional

multi-overlapping block with metric and non-metric images. The
system enables one to use additional terrestrial observations
and conditions, for example the condition that some points are
on a straight line or on a plane.

2. INTRODUCTION:

The combination of a bundle adjustment with an analytical

stereo plotter offers the. application of conventional
Photogrammetric methods in a new Wway. One of the most
important ©possibilities which can be used is the interactive
dialogue between operator, computer and analytical stero

plotter. The advantages of an interactive bundle adjustment in

connection with an analytical stereo plotter can be summarized
as follows: . : '

0 all measurements are generated interactive
0 possibility to edit all measurements
( editing = delete, remeasure etc. )
0 connection with an analytical plotter allows an
automatic transfer of homologue (tie) points
stepwise collection of data
O stepwise generating of approximations for
bundle adjustment
O stepwise elimination of errors ( also outlier detection )
o all terrestrial observations ( distances, angles,
azimuths, differences of heights ) can be
digitized in a parallax free model
0 "measuring" of conditions ( points on a plane or
on a straight line ) is possible.

o

In the following an overview of the mathematical models
and data structure used in CRISP is described.




i;‘ MATHEMATICAL MODELS:

3.1 Determination of approximations:

a.) Non=-metric photographs:

For non-metric photographs initial +values for bundle
adjustment are generated by a Direct Linear Transformation
(DLT, Bopp (1978)). For this a minimum of 6 ground control
points is necesarry to calculate values for inner and exterior
orientation. The same method is used for the calibration of a
photograph once and apply its result as a known camera type for
the remaining images.

b.) Metric photographs:

Here for calculation of initial values. a conventional
inner, relative and absolute orientation is performed. Also a
3-D space resection is available. The relative orientation 1is
the solution of the intersection condition of homologue rays.
For absolute orientation a modified algorithm for a 3=D
conformal transformation (due to numerical stability and large
rotations in close range photogrammetry) is used.

3.2 Bundle adjustment:

a.) Image coordinate measurements of ground control points and
homologue points.

All measured image coordinates are included in the bundle
adjustment by linearized equations. For every point two
Observation equations (for x and y image <coordinate) can be
generated:

dx = dx +c dc o+ u, (dX -dX) + u . (dY -dY) + u  (dZ -d7)
0 1 it 0 12 0 13 0
+ V11d9 + VIde t V.02 ;e (1)
dy = dyo + czdc + UZI(dXO-dX) + uzz(dYO»dY) + u23(dZ°~dZ)

i " 1 i
+ szd? + szd“ + vzadz

where the coefficients are given in Jordan/Eggert/Kneissl,

Handbueh der Vermessungskunde, Band III a/1 Photogrammetrie
pages 34, 35, 36 (J.B. Metzlersche Verlagsbuchhandlung,
Stuttgart, BRD).

For control points the unknowns dX, dY, dZ have to be set equal

to =zero. For a partially known control point, one has to set

the known coordinates (dX/dY/dz) equal to zero. For example
for a X/Z control point (Y unknown) the unknown dY remains in
equation (1). For every homologue point (tie point) all three
unknown coordinates dX, ¥, dZ have to remain in these
equations.

D.) Measured image coordinates of object points of observations
and conditions.
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This kind of measurements 1is included in the bundle
adjustment with linearized formulas (1) given above. Again if
one of the object points is a control point, partially known
control point or homologue point the unknown coordinate part
(dX and/or dY and/or dZ) has to be included in the same way as
explained before. If one of the terrestrial observations or
conditions spans over several models, then linearized equations
(1) are only generated for the image in which an observation or
condition object point is seen. The same 1s done when a
control point is only visible in one photograph.

¢.) Terrestrial observations.

For terrestrial observations the following linearized
formulas are used.

Distance:

N ST (Y - -7 -
dsij = y { (XJ Xi)dxi (Yj Yi}in (Zj Zi)dZi ( , (2)
7 +(Xj-Xi)dXJ ~:1h(‘{\}.—‘(1.)ti‘z"j +(Zj—Zi)de ]
Azimuth:
:--1_.. - - - - - . “dY}
dvij 5?4 [(Yj Yi)dXi (X‘,j Xi)in (YJ Yi)dxa + (XJ X1) i (3)

Height=difference:

dAHiJ = AZ'j - AZi (%)

Angle in 3-D space (i ... Station point):
non-linear form:

=l x- X - - 7.-1.007,-1.)1
costr | Y. S L A e L A (5)
o= =X 4K )+ 2K,
linearized forms & (% k 1
a, = X ~-X.
) ’ J ki
sijsikS]”“ de = aidxi + biin + cidZi + 3 = XJ”Xi’
ajdXJ + bdeJ + chZJ + for b, bi‘ b, replace X by ¥ (6)
akka + bdek + cdek + for Cir Cy ¢, replace X by 7

d.) Conditions for a straight line and a plane:
Straight line:

. vy (-1
et e X)) gy =0
i (1)

- - (Z,-7,) _
(et s Y iy =0
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Plane:

=0 (8)

The non linear conditions (7) have to be linearized with
respect to X, Y, Z of points i, j, k for the line. The same
has to be done with condition (8) for the plane (linearized
with respect to points i, j, k, 1). Every additional point on
the line gives raise to one more pair of line-conditions (7),
every additional point on the plane gives raise to one more
condition (8).

Remark:

Notice that observations and conditions are included in
two different ways in the adjustment. First image coordinate
measurements of every object point lead to equations (1).
Secondly observations and <conditions itself are included by
linearized equations (2), (3), (4), (5), (6), (7), (8). For
conditions a relatively high observation weight is chosen to
fulfill the condition.

3.3 Solution of adjustment:

For the solution of the 1least squares adjustment the
method of conjugate gradients is used. This method for solving
symmetric definite equation systems has been developed by
Hestens and Stiefel (1952). Applications in geodesy has been
demonstrated by H. R. Schwarz (1970), Gruendig (1980) and
Steidler (1980).

This iteration procedure is directly working with the
observation equations and therefore saves the memory- and time
consuming computation and solution of the normal equations. A

special quality of the conjugate gradients method is the quick
convergence in a local area.

Besides the simple and quick computation and the 1limited
need for core memory, another advantage occurs, which is due to
all gradients methods. For adjustment of observation equations
With rank deficiency (for example free networks, self-contained
partial blocks of images) a transformation onto the approximate
coordinates is automatically executed. For a free adjustment
of the network this approach offers a plausible solution
Wwithout additional expense.

A short overview of the method of conjugate gradients 1is
described below.
Given are the observation equations

Ax -1 = v (9)

This is leading to a function
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Flio = vive x'ATax - 2d'aTe + 178 (10)
which shall be minimized. By differentiation with respect to x
we get the normal equation system

AThx - AT = 0 (i1

The solution of this symmetric definite equation system
corresponds to the search for the minimum of the quadratic
funection F(x). The main principle of the relaxation
computation 1is the following. Starting from a trial vector
x(0) one chooses a direction vector h. The 1length of this
vector h is determined in such a way, that the quadratic
function F(x) decreases. In this way one gets a better
approximation x(1) for the vector of the unknowns. These sSteps
are repeated until the minimum of the function F(x) is reached.
This 1is the case, if the system (11) 4is valid without
contradictions. The various methods distinguish by the choice
of the direction h (relaxation .directions) and the choice of
the length of these vectors.

A possible strategy is to choose the directions in such a
way, that in the local area of the approximate solutions they

point to the direction of the largest descent of the quadratic
funetion F(x).

qrad(Fix)) = ATAx' 1) - aTp = plH) = 00D (12)
In the procedure of conjugate gradients the relaxation
direction h form a system of conjugate directions and the
vectors of residuals r form an orthogonal system. From a
theoretical point of view, this procedure leads to an exact
solution after m steps (m = number of unknown parameters).

3.4 Mathematical models for error detection:

Conventional least squares adjustment minimizes the sum of
the squares of the residuals. It minimizes the 2-norm:

(13)

[ ]

subject to certain constraints.

It is generally known that in the presence of blunders the
result of a least squares adjustment is usually distorted and
falsifigd. Therefore alternatives to least squares adjustment
have recently received new attention. One other alternative is

obtained by minimizing the norm of residuals in a different
way, namely minimizing the l1-norm:
n

ﬂvﬂl = ¥ tv, 1 = Min (14)

{=1

Minimizing this norm is equivalent to minimizing the sum of

305




absolute residuals.

Claerbout, Muir (1973) applied a
blunder detection in geophysical
obtained very good results for point
(1968) analysed numerical data and
of the l-ncorm compared to the 2-norm.
is rather insensitive with regard
measurements. It represents a "robus
procedure, confer also Dutter (1980
of adjustment by the l-norm can Dbe
considering the <c¢ase of direct obse
file of observations which contains o
(2, 2, 2, 2, 100)

We obtain residuals and adjusted valu
norms:

a.,) 2=-norms:

6 (arithmetic me.

adjusted value: 21,

residuals: (19.6, 19.6, 19.6,
b.) 1=norm:

adjusted value: 2.0 (median value)
residuals: (0o, 0, 0, 0, -98)
In case a.) the outlier distort.
considerably. In b.) the fifth obs:
as an outlier definitely. The adjus

soc=-called median value.
to their size, it is the value that 1i.
the above example it is the third v:
of measurements two values in the 1
between these two values) qualify :
the fifth value arbitrarily does not :
it remains the same.

In a file o:

Now the question arises whether
still hold in a more general adjus‘
observation equations with more than «
solve it.

Adjustment of observation equatic
be stated as follows:

b} HiI=Hﬂ

Problem (15) is not solvable in the cc
of differentiation, the function t
differentiable function. By replacing
of two non=-negative values a forr
leads to a linear program (conf. Fuc
program has a specific form and ¢

justment by l-norm for
1ta and Benning (1972)
1itercalation. Barrodale

>inted out the advantages
Adjustment using 1-norm
to outliers among the
' statistical estimation
. These robust qualities
demonstrated easily by
rations. Let us assume a
> outlier:

3 by using the different

.6 =78.14)

the adjusted value
'vation can be identified
:d  value leads to the
values ordered according
most in the "middle" (in
.ue). For an even number
ddle (and every value
the median. Increasing
'fect the median at all,

these robust qualities
ent model (adjustment of
e parameter) and how to

s using the 1=norm c¢an

(15)

ventional way by means

be minimized is not a
x and v as differences
lation is obtained which
s 1982). This 1linear
n be solved by a simplex
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method. Barrodale and Roberts (1973) developed an modified
simplex algorithm in which essentially only matrix A has to be
stored in the computer. It bypasses in one step several steps
of the conventional simplex algorithm. A great advantage of
the algorithm is that the rank of A can be less than the number
of unknown parameters x.

The algorithm searches that combination of observations
(out of all observation, number of observation = n) which

a.) is necessary for a non-redundant determination of the
unknown parameters x
b.) minimizes the sum of absolute residuals.

In the case of 1linear independent columns of A (that
means, if rank(A) = m, the number of unknown parameters x),
exactly m of the observations are necessary for determining the
m unknowns x. Consequently this group of observations (called
1-NB) has residuals (v-NB) with values -equal to zero. The
remaining n-m observations (1-B) will receive residuals (v-B),
which are generally nonzero. The solution Xx represents a
generalized median. 8

The robust properties of the median value as described
before still hold in the case of m unknown parameters. Any
observation (or all observations) out of the group 1-B can be
changed arbitrarily under the restriction that the signs of the
residuals v-B do not change. The solution remains an optimal
one and the vector x of unknown parameters will be unchanged.
This can be proved with the aid of the theory of 1linear
optimization, confer Fuchs (1982). If such variations of the
Observations are interpreted as outliers, the robustness of
adjustment using 1-norm can be easily seen.

For smaller problems like direct linear transformation or
absolute orientation the modified simplex algorithm is directly
used. For error detection in the bundle adjustment itself the
so=-called weight iteration is applied (Krarup 1980). This
procedure 1is very easy to combine with the conjugate gradient
method. By the choice of weights

1
P =1, v #* const » 1
1vl (16)
P = const, v # const <1 resp.
an adjustment with minimization of the sum of absolute
residuals can be obtained (const 1is a relatively 1large

constant).

4. DATA STRUCTURE:

The program system is designed to run on a 64 k-byte
computer. To save important CPU memory all data are stored on
an external device (like winchester drive etc.). Only short
information and data that needs very fast access are stored in
the central memory. Due to that reason a linear linked list is
kept in the CPU for important information and the location on
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the external device. Linked lists are used for point, camera,
observation and image data bases. The linked list for the
images is also the base for a data structure to handle all
image connections for stereo models and multiple overlapping
models. :

5. CONCLUSIONS:

The combination of a photogrammetric bundle adjustment
with an analytical steroplotter offers many new facilities to
the user. The most important facility is interactivity. This
allowes the operator to measure all his data in an interactive
way (delete, remeasure etec.) Checking of results and error
detection 1s possible in every step during the entire procedure
and thus reduces the possibility of including errors in the

final adjustment.
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