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The Anblock method, developed in 1960 [2], is a model triangulation
method restricted to planimetry only. This means that the models
must be pre-levelled to avoid disturbing the planimetric accuracy.
The procedure 1is non-iterative--the two-dimensional similarity
transformation being a linear problem.

The spatial Anblock method is an extension of the planimetric An-
block method. It starts to level (using equations) all models in a
block simultaneously.

Absolute and relative or independent ground control points (distan=-
ces, slopes, lake points) are used to level the models with respect
to the object photographed. Relative ground control points, of
course, can be determined easier than their absolute coordinates.

Two levelling procedures will be described. The first is based on
distances and heights and the other on only slopes.

Finally, because the coefficient matrix of the partially reduced
normal equations of the Anblock approach has a very special struc-
ture, an efficient algorithm for the solution of the system of nor=-
mal equations is described.

Bundle models.

A bundle model is used as a computational unit [3]. The bundle model
is defined by the points of intersection of the projecting rays from
(measured) corresponding image points in a triplet of consecutive
and relatively oriented photographs and the perspective centre of
the central photograph. The relative orientation of a triplet is
determined by eleven independent elements of orientation. An effi-
cient relative orientation method was developed by Molenaar [4, 5].
The rotation elements are determined independent of the base ele-
ments.

If independent models are measured, bundle models are formed by
connecting pairs of consecutive independent models (spatial simila-
rity transformation) [1].

Bundle models are used because they have the same lateral overlap as
the photographs. This means that the number of the bundle models in
a strip is two less than the number of photographs. All points can
be taken into account in the adjustment, apart from the poiants in
the first part of the first and in the last part of the last model
in a strip. The perspective centres cannot be used to determine the
tilt of the models. They are used only if auxiliary data are avai-
lable, i.e., APR and/or statoscope measurements.
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We suppose that all bundle models in a block are. approximately simi-
lar to the area of the object (terrain) photographed. In that case,
the triangulation (adjustment included) involves the application of
spatial similarity transformation to each model in a block, taking
into account all tie and ground control conditions.

The spatial similarity transformation.

Let %44, ¥i4» zij be the coordinates of an object point
j measured in the orthogonal model coordinate system Xi, ¥i,

z, of an arbitrary model (i) and u. and

.;..,;.,u..,v..,w.
i3, 137 13" i3 i3 Tij
rij’ Sij’ tij the transformed model coordinates after rotations
wl, ¢1 and «I about the X-, Y- and Z-axes of the orthogonal
object coordinate system XYZ, respectively.

We get
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Let Xj, Yj, Zj be the object coordinates of the object point
Js X4, Y4, Z{ the object coordinates of the origin i of the
model coordinate system Xj, ¥is 24i and Ay a scale factor.
We then get
X - w7
3 "1 13
- = ) 1d
Y5 Yy i i3 (14)
zZ, = Z, t,.
i i ij

We know a model can be levelled by a combination of the rotations
w! and ¢ about the X~ and Y-axes, respectively. We therefore
eliminate the coordinates —i., v;. and w; . from the equations (la)
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and (1b). This gives
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or, simply
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The elements a%l and aéz of the matrix Ai are chosen as independent
elements of rotation and called tilt elements. The remaining ele-
ments are now simple functions of the tilt elements
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We see that if the tilt elements of all models in a block are known,
the transformed coordinates (ujj, Vij» Wij) of all mea-

sured model points are determined; see: the rel. (1f) and (lg). In
other words, the models are levelled. This means that a planimetric
triangulation can be carried out next. The two-dimensional transfor-
mation equations are obtained by elimination of the coordinates
Tijs Sij and ty j from the eq. (le¢) and (14).
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According to the last equation of (lf),

written in the form:

bt =V - (bil>2

equation (1i) can also be
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and
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Finally, we introduce the matrix Ci; see: the rel. (1f) and (1li).

Equation (2) contain four independent planimetric elements of orien-
tation:

Xi’ Yi’ Aib%l and Aibél. They are linear if the transformed model
coordinates uj j, Vij» Wij are known. This is the Anblock

approach [2]. To determine these coordinates, we consider equations
(3.

Scale - tilt and height - procedure

(a) SCALE DETERMINATION

Considering the scale factor Ay in equation (2) as an independent
parameter, equation (3) contains only three independent elements of
orientation:

Zi’ 3;1 and aiz To level the models the scale factors must

therefore, be determined first.

Let 1j3534+1 be the distance between points j and 1 in the

model gi) and 1jj+1 the distance between these points in the

object. It is evident that between these distances and the scale
factor A; the relation exists

Aielijsrl = 1441 (4)

in which
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Next, we consider points j and j+1 in the overlap of the models (i)
and (i+l). For the points in model (i+l), an equation of type (4)

is written.




Eliminating 15541 from this equation and equation (4)
gives:

Aieligi+l = Mtlelitijgra (5)

Equations (4) and (5) are linear. This means that no approximate
values for the scale factors are required. Equation (5) is evaluated
for a pair of common points in each overlap and equation (4) for two
points (in one and the same model) of which the distance

1jj+1 is determined by a geodetic measuring method. Any more
distance 1j3+1 gives a redundancy.

(b) TILT AND HEIGHT DETERMINATION.

If the scale factors are known, they are substituted in the equation
of type (3) and next for each measured point an equation of type (3)
is evaluated (height control points included). To improve modelling,
equations containing only tilt elements can be added to a system of
equation (3).

We therefore consider again two points j and j#1 in the model (i).
For point j+l, an equation of type (3) is written. Eliminating Zy
and then A; from this equation, (3) and (4) give
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The angle @j4+1 1s simply called "slope". It is the angle

enclosed by the straight line connecting the measured points j and
j+l in one and the same model and a plane parallel to the XY¥-plane.
The angle Gj4+1 must be determined by geodetic measuring.

This is not necessary, however, if arbitrary pairs of points, for
example of the shoreline of a lake (lake points), are measured,
because in that case: aj5+1 = 0.

Equations (3) and (6) are non-linear. If wl and @i are small,
however, fhe tilt elements a%l and a%z are also small and the
element ajzy is approximately equal to the unity. We therefore put
in equations (3) and (6):

i _ i+l _ -1

a33 333 » 00 s
If the system of equations (3) and (6) is solved, transformed model
coordinates Uigs Vijr Wiy (1f) and (lg) are determined
next for each measured model point.
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The process can be terminated if the following conditions are ful-
filled;

For a block containing n models, the scale-tilt and height procedure
involves the solution of a system of n linear equations and next a
system of 3n non-linear equations (apart from the Zi-coordinates

of the points to be determined). The next procedure involves the
solution of a system of 2n non-linear equations and then a system of
n linear equations.

Tilt height procedure

(a) TILT-DETERMINATION

Finally, we consider points j and #1 in the overlap of the models
(i) an (i+l). For the points in model (i+1) and equation of type (6)
is written. Eliminating sina,.,; and next the ratio Xi+1/Ai from
the equations, equations (6)~and (5) give
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We see that equations (6) and (7) contain only tilt elements (two
per model).

The coefficients of the tilt elements are formed by % - and yy

- coordinate differences. It is therefore recommended to use pairs
of points parallel to and perpendicular to the line of flight. We
know, that a system of linear equations can only be solved if the
coefficient matrix of the system is non-singular. It is also evident
that the models must now have a forward overlap of 50%Z (bundle mo-
dels).

We consider a block containing only parallel strips and a sidelap of
15 to 20%. To level the models with respect to the object photo-
graphed, in each strip a slope 05441 perpendicular and in

the first strip a slope parallel to the line of flight must be
known. Any extra slope gives redundancy.
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The process to determine definite values for the tilt elements is
similar to the scale-tilt-height procedure.

(b) HEIGHT-DETERMINATION

After evaluation of the planimetric triangulation, the height trian-
gulation is finally carried out. This triangulation is based on the
last equation of (1i)

Zj - Zi = )‘i Wij (8)

in which

I i, i,
X, = &/(xibn) + (A\byp)

is determined by the foregoing planimetric triangulation.
Solution of the planimetric normal equations.

The straightforward approach from equation (2) gives very large
systems of equations containing two groups of unknowns: coordinates
of the points to be determined and 4 n planimetric elements of
orientation. Because of the special structure of the coefficient
matrix, one group of unknowns can easily be eliminated; for example,
the coordinates.

Let

Mx =1 9)

be the partially reduced system of m normal equations in m unknowns
(m = 4n), in which M is a coefficient matrix, symmetrical and non-
singular, x and 1 being vectors composed of the values of the plani-
metric parameters and of the constant terms, respectively.

If matrix M is symmetric, the matrix can be resolved into the pro-
duct of two triangular matrices of which one is the transpose of the
other. Thus if S is an upper triangular matrix and ST its trans-
pose

M = sTg (10)

The solution of the system is reduced then to the solution of two
triangular systems

sTk = 1 and sx = k (11)
because the two systems (11) are equivalent to system (9).

In view of the rule of matrix multiplication, the elements of matrix
S are simple functions of the elements of matrix M.




Loy

With this squarg-root method, we have to record only the
approximately 25 elements of matrix M and of matrix S and the 2 n

components of vectors k and 1. The number of multiplications,
divisions and square roots necessary for finding the elements of
triangular matrix $ is equal to %(m2 + 3m + 2m).

Matrix M of the partially reduced normal equations has the following |
structure:

‘r;; M -M M -M - i:—
11 13 Ty M5 Mg
y Mg My oMz My Mg B
ST M3z 0 My Mg )
T T T My My Mg -
- - - - M 0 -
- - - - - - (12)

Because of this structure, we have now to record only the elements

of the odd rows of matrix M: approximately EZ elements.

We introduce now a triangular matrix S having the same structure

of matrix M. )

|

S;1 O 513 B1s S15 Sy "

0 511 S1a Si13 816 Sy5 T '

0 0 Sy O Sy Syp - -

0 0 0 533 S35 S35 ) (13)
0 0 0 0 T - -

0 0 0 0 0 Ses - -

0 0 0 0 0 0 - -

0 0 0 0 0 o - -

and find that the structure of the product sTs is similar to the
structure of matrix M (12). This means that we may also omit the
elements of the odd rows of triangular matrix S. We thus have to

record only the approximately E; elements of matrix S and the number
of multiplications, divisions and square roots is equal to

%3 (n2 + 3m + 2m). Compared with the conventional square root
method, there is reduction by approximately 50% of the number of

multiplications.
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ABSTRACTS

Two levelling procedures for bundle models and independent models
are described. Absolute and relative (distances, slopes and lake
points), ground control is used for the absolute levelling of the
models. Finally, an efficient algorithm for the solution of the
partially reduced normal equations of the Anblock approach 1is des-
cribed.
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