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1. The problem

The least squares adjustment of photogrammetric blocks implies
the solution of large systems. Many algorithms are applied to
this aim: at present the most commonly used algorithm is the Cho-
lesky decomposition, followed by a forward-backward substitution.
Another interesting method id the conjugate gradient algorithm,
which, although very advantageous from the point of view of the
storage-sparing, gives a bad proof as far as the computing time
is concerned: this specially when a very accurate solution is
required as it is customary in geodetic sciences.

An algorithm, combining an incomplete Cholesky decomposition

with conjugate gradients has been proposed in recent years: this
method has a velocity performance comparable to the Cholesky me-
thod, however with a much smaller storage waste. The method after
the Meijerink and Van der Vorst has been called the Incomplete
Cholesky=-Conjugate Gradients method (ICCG).

The normal matrix C of the system to be solved by ICCG has to sa-
tisfy some hypotheses to fulfill theoretical reguirements. These
hypotheses can be summarized by saving that C must be an M-matris
(see Varga), i.e. C is a non singular matrix, with negative off-
diagonal entries (ciy <0, 1#3) and C-' has only non negative
entries (C~'z20).

The normal matrices of block adjustment do not fit the M-property
nevertheless, following Kershaw the ICCG method has a possibility
of successful application, although one is not any more sure of
convergence.

The least squares adjustment of photogrammetric blocks usually
implies the solution of large linear systems, with very sparse
metrices, i.e. with only a small percentage of non-zero entries.
Particularly for the solution with an exact method, such as the
packed Cholesky algorithm, but also with some iterative methods,
is very useful to have a matrix with all non-zero elements as
near as possible to the main diagonal. In fact, with such a con-
figuration, the fill in of an exact method is minimized and the
number of iterations of some iterative methods is strongly de-
creased,

The clustering of the elements of a sparse matrix round the main
diagonal can be obtained with a reordering of the unknowns. Se-
veral reordering methods exist with different phylosophy (see
Tewarson); one of the best is the reverse Cuthill-McKee algorithm
as modified by Gibbs, Poole and Stockmeyer.

2%

2. The method

Reordering algorithm

A paper by Gibbs, Poole and Stockmeyer which explaines shortly

and clearly the aim and the strategies of the recordering algorithm
is directly quoted in the following; the prerequisite to under-
stand the sentences is "Sparse matrices" by Tewarson.

- Finding a starting vertex - The level structures of small width
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are usually among those of maximal depth. Clearly, increasing
the number of levels always decreases the average number of ver-
tices in each level, and tends to reduce the width of the level
structure as well. Ideally, then, one would like to generate le-
vel structures rooted at endpoints of a diameter. Since there is
no known efficient procedure that always finds such vertices,

a sub-optimal algorithm is employed to find the endpoints (u and
v) of a pseudo-diameter, that is, a pair of vertices that are at
nearly maximal distance apart.

- Minimizing level width - In the process of finding a pseudo-
diameter, two level structures L, and L, rooted at the endpoints
u and v, respectively, are constructed. It is possible to combine
suitably these two level structures into a new level structure L
whose width is usually less than that of either of the original
ones..

- Numbering - The numbering procedure is similar to that of the
reverse Cuthill-McKee algorithm in that it assigns consecutive
positive integers to the vertices of the graph G level by level.
A few modifications were necessary, however, since the level
structures L obtained by minimizing level width are of a more
general type than the rooted ones used in the reverse Cuthill-
McKee algorithm. When the resulting numbering is similar to that
obtained by the (forward) Cuthill-McKee algorithm, profile can
be further reduced by using the reverse numbering.
Preconditioning algorithm '

The incomplete Cholesky factorization W is obtained easily by
modifying the usual relations of the exact Cholesky factorisa-
tion, as follows:

=1
Wiz T\/Ci1 ‘gwki

i=1
wlJ = (clJ - Ei} Wy s ij) / Wis o if i3 # 0 |

) (3 >1)
w.,. = 0 ’ if c¢.,. =0

13

If an argument of the square root is negative, it must be replaced
with a small positive number. The incompleteness is due to the
fact that the indices run only on the non-zero elements of the
normal matrix C.

Conjugate gradient

Set, as starting point, where C and d are respectively the nor-
mal matrix and the known vector of the normal system:

ry = -(CXO + 4d)

(Ww) ] r,

By
the algorithm runs with the following recurrent scheme:

= Tyt "1?. 1
= (rli.(N W) -l) / (Pl C p)

X, = X, + o, P. . A
i i-1 i Py i=1,2,...,n
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No investigation has yet been possible, but the importance of
the argument suggests to regard with care this method.

4. The agpliéation'to the on-line triangulation

The on-line triangulation is well becoming one of the most impor-
tant field of appllcatlon of analytical plotters and, generally,
of the computer-assisted photogrammetric instruments.

As it is well known, an aerial triangulation is performed on-line
when the instrument used for the data acquisition is interfaced
with a computer capable to process those data in real time or
near-real time in comparison with the acquisition time.

The application of the above described ICCG method to the on-line
triangulation requlres to emphasize that an on-line triangulation
can be divided in three phases:

- data acguisition,

- error detection,

- final adjustment.

Two different approaches to on-line triangulation are possible
with reference to the two last points.

First, the software implemented on a computer-assisted photogram-
metric instrument must primarily be able to check the guality of
the acquired data and to detect the middle gross errors and the
blunders. The on-line computations have only a temporary charac-
ter and do not necessary achieve a rigorous solution, since an
off-line final and usually more sophisticated adjustment is per-
formed afterwards.

Second, an on-line adjustment is executed to give final results
available immediately after the last measurement together with
gross error detection and elimination.

The former way 1is more likely to be used in practice and is also
one of the best kinds of applications of the ZCCG method.

Indeed the phase of gross error detection and elimination is
surely more expensive than that of final adjustment. Consequen-
tly, the improvement of the efficiency of an on-line triangula-
tion procedure, to reduce the CPU execution time in this phase,
is just possible with a core storage sparing iterative solution,
like ICCG, applicable also tc a very small computer interfaced
with photogrammetric instruments. Moreover, since the numeration
of the points is established by assigning suitably chosen numbers
to the observed points, the blunders or the gross errors that
more frequently occur are those of incorrect attribution and/or
identification of the point number. Now, the advantage of real
time gross error detection and elimination as well as that of

the evaluation of the intrinsic accuracy of the various sub-
blocks, useful to decide eventual rmobservatlons, is achieved
with an on-line procedure. Note that in this way by the ICCG me-
thod it is not needed to repeat the application of the precondi-
tioning algorithm.
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