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ABSTRACT:

In this paper, a brief discussion is given to the existing problems in 3D geological subsurface modeling. Two groups of 3D data
structures are then identified with the focus on the octree representation and its Peano coding. Two spatial operations based on
Peano keys are described in details. Finally, the experimental results of the developed system, GeoView, are given.

1. BACKGROUND

Geographic Information Systems (GIS) have been widely used
and have shown their power in spatial analysis, database
management and various other applications. The extensive use
of computers in oil and mining explorations has introduced the
possibility of applying the GIS technology to the field of
geology and geophysics.

However, geological subsurface modeling involves usually a
large volume of digital information which is spatially
referenced in three dimensions. The use of traditional
interpretation methods (e.g., contour maps, cross sections,
fence diagrams, isometric surfaces) limits the view of the
geological world to two dimensions, or at best quasi-three
dimensions (Fisher and Wales, 1992). The accumulation of the
geological information calls for a GIS system capable of
handling 3D data efficiently. This system should combine the
search and analysis of databases with the versatility for
visualization using computer graphics technology (Jones,
1989). Currently, most GIS systems are based on two
dimensional data structures -and could not handle information
in the third dimension efficiently. Attempts have been made to
extend spatial operations to 3D by adding the third
dimensional information into 2D data structures, such as
including elevation data as attributes (Arc/Info, 1992).
Although such systems have 3D information in databases, the
full 3D functionality cannot be expected, such as 3D modeling,
query of 3D spatial elements and association of non-spatial
data to solid elements, etc.

Geological applications pose special challenges to the
development of GIS. Geological phenomena are 3-dimensional
in nature. When fit into 2-dimensional GIS systems, they are
not accurately modeled, analyzed or displayed (Smith and
Paradis, 1989). In geological modeling, all applications require
increasingly quantitative and accurate underground material
characterizations within the 3D subsurface environment. The
3D data are required because the depth dimension is in the
same general range as the surface dimensions, and the true
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spatial relationships are important to the problem analysis
(Turner, 1989).

3D geological modeling has identified a number of
requirements on GIS systems. An ideal system should provide
a variety of facilities, such as data storage of a large amount of
volume data, input to and output from models, support for a
range of data structures and for transformation between
different data structures, integration of data from different
sources, assistance with construction of models, integration of
complex spatial relationship between geological layers,
geostatistical techniques for data interpolation before model
input, determination of model parameters, design of sampling
strategies, and error analysis (Mason, et. al., 1994). Additional
important facilities may be dynamic - visualization and
animation of the third dimensional spatial information.

This paper presents the results of a research project initialized
in 1993 and conducted jointly by The University of Calgary
and the Geological Survey of Canada to model and visualize
3D geological subsurface information using 3D data structures.

In this paper, a review of 3D data structures is given. A few 3D
spatial operations developed and implemented in our system
are discussed. The system itself is introduced in the last
section, which has been implemented on a Silicon Graphics
Workstation by using C programming language, Motif and
Graphic Language (GL).

2. THREE DIMENSIONAL DATA STRUCTURES

Although 3D GIS is badly needed in geological applications,
progress in this field has been relatively slow. This might
generally due to difficulties in defining complex geological
information and specifically to the need for finding data models
and data structures suitable for handling large quantities of 3D
geoscientific data. Many recent advances in the design of GIS
are applicable, but in general this technology is oriented
towards two rather than three-dimensional information (Jones,
1989).
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Depending on geometric characteristics, 3D objects can be
described by two groups of geometric representations, namely,
surface-based and volume-based representations (Li, 1994).

The surface-based 3D representations describe geometric
characteristics of objects by surface entities. There are four
types of them, namely, grids, shape models, facet models, and
boundary representations. Grids and shape models are in raster
format and the facet models and boundary representations are
in vector format. In general, the grids, shape models and facet
models are suited for describing object surfaces with irregular
shapes; while boundary representations give the exact surface
geometry of objects with regular shapes.

Volume-based representations describe the interior of objects
by using the solid information instead of surface information.
With these representations, the solid information of objects can
be presented, analyzed and visualized. 3D binary arrays, needle
models, octrees and CSG (Constructive Solid Geometry)
belong to this group. CSG is in vector format. Generally
speaking, 3D binary arrays, needle models and octrees are
capable of modeling objects with irregularly shaped objects;
while CSG is well suited for modeling regularly-shaped
objects.

Most of the data structures mentioned above, to some extent,
are characterized by a restricted domain of representable
objects, due to the fact that the objects are constructed from a
limited number of mathematically well-defined surfaces or
solid primitives (Meagher, 1982). For example, surface-based
representations may suffer from inefficiency when geometric
and Boolean operations are of high priority.

Being an extension of a 2D quadtree, an octree models 3D
volumetric objects by recursively subdividing the object space.
An object is represented by the root node in the form of a cube,
which is then subdivided into eight octants to form the first

level of the tree. Octants that are not entirely occupied by the

object are called partial octants and are further subdivided to
smaller octants until each suboctant is either empty, fully
occupied by the object, or until the desired resolution is
reached. Extended octrees can model objects of any shapes
(Laurini and Thompson, 1992). The storage requirement of
octrees is much low in comparison to traditional raster
methods. Octree remains also advantageous because of its
raster structure and efficient geometric and Boolean operations
based on spatial indexing and relational operations.
Furthermore, multi-resolution modeling is another important
characteristic of octrees.

Kavouras and Masry (1987) applied the octree method in a
geological environment. They demonstrated the use of linear
octrees for storing a model of a gold ore deposit, using a
system called Daedalus. Algorithms for octree-based geometric
operations, such ‘as translation, scaling, rotation, and
perspective transformation, have been investigated by Jackins
and Tanimoto (1980), Meagher (1982), and Laurini and
Thompson (1992).

In the presented research, octrees are adopted for geological
subsurface modeling because of its aboved mentioned
advantages.
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3. SPATIAL OPERATIONS BASED ON
PEANO KEYS

Indexing methods have a great impact on the efficiency of
octree based spatial operations. The relative merits of five
methods, including row, row prime, Hilbert, Morton (or Peano)
and Gray code, were assessed by Abel and Mark (1990). It was
concluded that the Morton ordering provides a great efficiency
in window searching and has been used in most linear quadtree
systems.

It is noted that a linear octree, a pointerless structure first
proposed by Gargantini (1982), locates any node in a tree by a
unique key which is obtained by interleaving binary
coordinates of X, Y and Z. This can be implemented by using
Peano coding. It reduces the amount of storage of octree
representations and provides an efficient spatial indexing
method. Spatial geological operations can be developed based
on Peano keys for geometric operations, Boolean operations
and visualization.

The Peano keys can be generated by interleaving binary
coordinates of (X, Y, Z). For example, an octant with P(O)=14
has decimal coordinates (1, 1, 2). The corresponding binary
coordinates are (01, 01, 10). Interleaving the binary
coordinates in the order of Z, Y, and X for every bit starting
from lower bits results in the binary Peano key 001110 which
is 14 in decimal. This nature of the Peano keys makes the
storage of Peano keys compact and the conversions between
Peano keys and coordinates very efficient. In addition,
neighbourhood searching in a Peano encoded octree is efficient
because of the characteristics of the N curve (Laurini and
Thompson 1992). An octant with a Peano key of P and a size of
S is expressed as O(P, S).

Peano coding has been chosen for implementing octrees in this
project due to its efficiency in storage and spatial indexing,
inheritance of relationships with spatial geometry and its
capability of preserving spatial contiguity. Out of a number of
subsurface oriented algorithms, two particular omes based
directly on the Peano keys are presented in this paper. The first
algorithm is used for cutting an octree representation by a
plane with any orientation. The second one performs a
geological datum adjustment.

3.1 Plane cutting algorithm based on Peano codes

One of the important operations in the geological subsurface
modeling is to build a fence diagram along a defined path on
the subsurface model. The geologists are then able to visualize
the profiles along the fence diagram and analysis the
subsurface structures.

The basic component and a simplified case of the above-
mentioned operation is to define a cutting plane on the
subsurface model and to remove the front part of the model so
that the user is able to visualize the profile along the cutting
plane. An algorithm is developed to perform this function on
the octree representation of the subsurface model based
directly on the Peano codes. To explain the algorithm, the two
dimensional case (quadtree representation) is used. The plane
cutting algorithm is simplified to the line cutting,
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Figure 1 shows a quadtree representation with three levels.
Each smallest quadrant is labeled with its corresponding Peano
code. A cutting line is defined as Ax + By + C = 0. For each
cutting line, we get the slope K from the equation as K = -A/B.
We further decompose K to the x-component K= 1 (or -B/A)
and y-component Ky = -A/B (or 1).
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Figure 1 Line Cutting on a Quadtree Representation

For each cutting line, the intersecting points with the boundary
of the quadtree representation are determined. The Peano
codes of those intersecting points can then be calculated simply
by interleaving the x and y coordinates. Once we get the two
intersecting points, the next step is to search for those
quadrants along the cutting line. The final step is to remove the
front quadrants.

1) Determine the intersecting points
In Figure 1, the cutting lines 1; is defined as:

liix-4y+8=0, K=-A/B=1/4,

Ki=1, Ky=-A/B=1/4.

The binary expressions of Kyand Ky are Kx = 01 @), Ky =272 1)
= 0.01 @. Kp is then the interleaving of Kx and Ky, Kp) =
10.0001 ¢.

Note the calculation of Ky is different because decimal digits
are involved. We use the 2" components to express the decimal
part. If n = -1, we set a 1 at the first digit after the decimal
point of binary number. If n = -2, we set a | at the second digit
after the decimal point. This is similar for the subsequent
digits. The order of interleaving for the decimal part is the
same as for the integer part.

The starting intersecting point of the line with the boundary x
=01is P (0, 2).

2) Determine the Peano code for the starting quadrant

Once we have the starting intersecting point, the next step is to
calculate the Peano code for the starting quadrant.

Let PC[0] denote the Peano code for the staring quadrant of the
line. We could then calculate PC[0] by interleaving the x- and
y-coordinate. For example, for point P; (0, 2)

x=0a0=000

y=2a0=10¢

PC[0]=0100 =4 qg
3) Search for the quadrants along the cutting line
To search for the remaining quadrants along the cutting line,
we have to use the information about x- and y-components of

the slope. To propogate from one point to its next point along
the cutting line, the following equation is used:

PC[i] = PC[i-1] o +K @

To demonstrate the usage of the above equation, the searching
procedure along 1; is shown as follows:

PC[O] =4 o = 0100 [3)

PC[1]1=PC[0]+K =0100¢+10.0001 @
=0110.0001=6.06 a0

In the above binary addition, if an increment occurs at a digit
of x-component, then it will pass the increment to the higher
digit of x-component, instead of the next direct digit. The same
holds for y-components.

If the resulted Peano code is not an integer, the integer part is
used as the code of the linear quadtree. The decimal part is
kept for searching further quadrants along the cutting line.

PC[2]=PC[1]0110.0001»+10.000 lg
=1100.0100g= 1225

PC[3]=PC[2]1100.01005+10.000 1p
=1110.0101p=14.31q

PC[4]1=PC[3]1110.0101»p+10.0001¢p
=100101.0000p =370

PC[5]=PC[4]100101.0000+10.0001¢
=100111.000 1g=139.06 g

PC[6]=PC[5]100111.0001»+10.0001p
=101101.0100¢=4525 qo

PC[7]=PC[6]101101.0100p+10.0001
=101111A0101(2)=47.31(10)

Consequently, the Peano codes in the list are 4, 6, 12, 14, 37,
39, 45 and 47.

Once all the Peano codes along the cutting line are detected,
the front quadrants can be removed.

3.2 Datum adjustment algorithm based on Peano codes

Datum adjustment is an operation in subsurface modeling to
stretch the bottom surface of a layer Sy to a plane. The top
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surface of the layer and other layers are changed accordingly by
substracting the depths of the surface So. This operation is
essential for estimating the volume of a lithology or viewing
the other layers with respect to a certain layer.

The following are steps of this operations.

1) Save the depth offsets of the bottom octants Oy(P, S)
e Resolve the Peano key P and get the coordinates (X, y, z).
¢ Store the z to a working array as Z(x, y).
e Copy z to Z(x+, y+j) withi= 1,2, ..S-1andj =1, 2,
LS-LifS> 1.

2) Adjustment operations on all octants O(P, S)
case 1 : the size of the octant O(P, 1) is 1.
¢ Resolve the Peano key P and get the coordinates (x, y, z).
e Subtract the bottom depth 2’ = z - Z(x, y).
e Interleave the coordinates (x, y, z’) to calculate the new
Peano key P°. The datum adjusted octant is O’(P’, 1).

case 2 : the size of the octant O(P, S)is S (S = 2%, K > 0)

e Resolve the Peano key P and get the coordinates (x, y, z).

e If 7(x, y) > 0 and Z(x, y) < S, subdivide the octant into 8
smaller octants and go to the beginning of step 2).

e If Z(x, y) > 0 and the Remainder[Z(x, y), S] # 0,
subdivide the octant into 8 smaller octants and go to the
beginning of step 2).

e Check the values of Z(x+i, y+j) withi=1,2, ... S-1 and
j= 1,2, ... S-1. If there is any value different from Z(x,
y), partition the octant and go to the beginning of the
steps 2). Otherwise, subtract the bottom depth 2> = z -
Z(x, y). Interleave the coordinates (x,y,z’) and get the
new Peano key P’. The datum adjusted octant becomes
o, S).

3) Conformance check and aggregation

¢ Set the initial level i = 1.

o If the Remainder[P’, 8i] =0and S = 2“, check the values
of P> +j*8"! (j=1, 2, ...7). I all octants O(P*+j*8"", 2}!)
exist, aggregate them and create a new octant O’(P’, 2%).

e i=i+1 and repeat the above procedure until all the Peano
keys are processed and no aggregation can be made.

The following is an example based on a quadtree.

1) At first, we register the depth offset values of the bottom
boundary. The octant O(4, 2) has the coordinates (0, 2). We
have Z(0) = 2 and Z(1) = 2. Similarly, we have Z(2) = 1, Z(3)
=0,Z(4)=1L,Z(5)=1,2(6)=2, Z(T)=2.

2.1) The Peano key 18 can be resolved as its coordinates (1, 4).
Since the size of the quadrant is 1, y’ = 4 - Z(1) = 2. The new
coordinates is (1, 2) corresponding to its Peano key 6.

Similarly, we process the octants with Peano keys 9, 10, 11,
33, 35, 44, 45, 46, 54 and 60. Their new Peano keys are 9-8;
10-10; 11-11; 33532; 35-534; 44540, 45—41; 46->12;
54—51; 60—>56.

2.2) As for octants with Peano keys 4, 12, 24, 36, 48 and 56,
their sizes are S = 2 (K = 1). For example, if P = 12, the
coordinates are (2, 2). Since Z(2) = 1 < 2 = §, the quadrant is
partitioned to 4 smaller quadrants 12, 13, 14 and 15, which

have the size of 1. After processing, the smaller quadrants have
the Peano keys of 9, 12, 14 and 15, respectively.

Similarly, quadrants with P = 24, 36, 48 produced the
quadrants with P’ = 13, 24, 26, 27, 33, 35, 36, 38, 37, 39, 48,
50.

For P = 56, the coordinates are (6, 4). Z(6) =2 =S, Z(6) > 0
and the remainder [Z(6), 2] = 0. Since Z(7) =2 = Z(6),y’ =4 -
2 =2. The new coordinates are (6, 2). The new octant is O’(44,
2).

Finally, octant O(4, 2) becomes O(0, 2).

3) According to the procedure described above, octants O’(8,
1), 0’(9, 1), 0°(10, 1), O’(11, 1) can be aggregated to O’(8, 2).
Similarly we have O’(12, 2), 0°(32, 2), O°(36, 2).

At the level 1 = 2, no aggregation is required. The process is
thus finished.
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Figure 2. A quadtree before the datum adjustment
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Figure 3. The quadtree after the datum adjustment
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4. GEOVIEW SYSTEM

The presented system aims at 3D subsurface modeling to
improve oil, gas, and mining explorations. Subsurface data are
loaded into the system as 3D multi-layers. For each grid point
on the x-y plane, depth values of top and bottom surfaces of
each layer are registered in the z direction to form the
geometric description of the subsurface layers to which layer
attributes are attached. Efficient data structures and modeling
tools are provided for visualising, analysing, and managing the
3D geological subsurface data. The system is developed in C
programming language and based on a strong Graphics Library
package which takes advantages of hardware of Silicon
Graphics.

Two modelers coexist in the system: a surface modeler and an
octree modeler. The surface modeler is used to convert the
input data into a surface model according to the top-bottom
layer-surface information; while the octree modeler transforms
the same data into an octree model if necessary. Since the
surface model and the octree model depict the same objects by
using surface and solid geometric information respectively, the
efficiency of modeling functions based on these two models is
also different (Li 1994). For example, the surface model gives
a relatively realistic shaded surface for visualisation because
subtle normal vector changes of the surfaces can be
represented. This is especially important when the lighting
function is used. On the other hand, octants have six faces
which, in turn, give only six normal vectors parallel to three
principal axes. If the resolution of the octree model is set as the
same as that of the input data, there is no loss of geometric
information in the resulting octree model. However, the
graphic quality of the octree model display is not comparative
to the realistically shaded surface model because of the
restriction of normal vector directions. Furthermore, layer-
related topology can be constructed in surface models.

One of the major advantages of octree models is efficient
Boolean operations because of the simple geometry and
topology of octants. If encoded by Peano keys (Laurini and
Thompson 1992), some spatial operations can be carried out at
the bit level. In this system, octree models are, therefore, used
to perform 3D spatial operations for analysis and simulations.
Consequently, the system maintains two kinds of models for
the same loaded object, namely the surface model for
visualisation and the octree model for spatial operations.

Since most spatial operations are based on the octree
representation the efficiency of octree operations often
determines system responses to users requests. In special cases
of geological subsurface modeling with large layer datasets,
this is especially true. Among others, one of the critical and
frequently used basic spatial operations is finding neighbour
octants for a given octant. An application of this basic function
in subsurface modeling could be to find all octants on the
surface, for example, for a conversion from an octree to a
surface model. Surface boundary lines can then be extracted
from the boundary octants. The same basic function is also
used in the operations to cut a subsurface model by a plane or a
half cylinder face so that the intersection profile of the solid
surface model is exposed for material queries and geological
interpretations (Li and Xu, 1995). Figure 4 shows one of the
examples in geological subsurface modeling. "Fences" are
interactively defined on a 3D subsurface model. Spatial

operations are required to perform the intersection between the
"fence" (multi-planes) and the model. The front part of the
model is then removed so that the defined profile can be
visualised. In light of the above facts, it is necessary to develop
an efficient algorithm for finding boundary octants in order to
support quick system responses to users' octree-based requests.
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