
1252 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

AN STUDY ON DATA CONSISTENCY IN SPATIAL DATABASE SYSTEM

Zhu Xinyan Li Deren Gong Jianya

National Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing
Wuhan Technical University of Surveying and Mapping

129 Luoyu Road, 430079, Wuhan, China
 zxy@rcgis.wyusm.edu.cn

KEY WORDS: Data Sharing, Data Consistency, Lock, Undo/Redo Transaction, Notification-Reread Method.

ABSTRACT

In this paper, two cases of data consistency problems are discussed in Multi-user Geographical Information System.
When a user updates some spatial data that have been accessed by other users in database, or execute an undo/redo

operation, data consistency probably will be destroyed. To solve the problem caused by the first case, a “Notification-
Reread Method” is introduced. As for the second case, there are many problems to be studied.

1 INTRODUCTION

Geographical Information System (GIS) is widely used in many fields. With the rapid development of computer
network, GIS users care more about data sharing in networks. In traditional relational database, data consistency was
controlled by consistency control mechanism. When a data object is locked in a sharing mode, other transactions can

only read it, but can’t update it. This is appropriate in traditional relational databases that store attribute data and mainly
deal with short transactions. In spatial databases, because of vast amount of data and complex topological relations,
long transaction are met frequently. If the traditional consistency control method has been used yet, the system’s

concurrency will be badly influenced. So there come many new requirements about the consistency control in the field
of GIS. There are many aspects of data consistency problems in spatial databases, such as the inconsistency between
attribute and geometry data; the inconsistency of topological relations after geometry objects is modified. In this paper,

other two cases of data consistency are discussed in multi-user geographical information system.

In GIS, there are many forms of data, such as geometry data, attribute, image data, and DEM data. In this paper , we

only discuss spatial geometry data.

2 UPDATE CONSISTENCY

Considering the case in Figure 1, a group of users are manipulating spatial data in the same range. Suppose that there is
a spatial object D. At one moment, one user want to update D, but at this time, other users have read it.

2.1 Traditional Method in Relational Databases

In traditional relational databases, DBMS deal with this problem by concurrency control protocol. Transaction was

introduced to implement this control protocol. In order to prevent any transaction from reading or updating data that is
being updated by another transaction we require a locking mechanism, which guarantees a transaction exclusive access
to an item of data while a lock is in force. The are two kind of locks: read-lock (sharing lock) and write-lock (exclusive

 Figure 1. A block of Spatial data accessed by multi-users

User1 User2 Usern

…

 …

 D

 …

Xinyan Zhu

1253International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

lock). A read-lock gives read-only access to a data item and prevents any other transaction from updating the item. Any
number of transactions may hold a read-lock. A write-lock gives read/write access to a data item and, while in force
prevents any other transaction from reading or writing to the data item. It gives a transaction exclusive access to a data

item.

Using the traditional locking mechanism means if any one of the users read the object D, other users cannot update it. In

traditional relational databases which mainly deal with attribute, and as the data items a transaction concerned usually
are not very much, long transactions are not frequently happened, so the locking mechanism is properly. In spatial
database, because of vast volumes of geometry data, usually, users manipulate a large scope of data items and hold for a

long time. So long transactions are met frequently, the traditional locking mechanism is not satisfied in spatial database
management. For example, a user read 16 maps with 1:10000 scale for display or spatial analysis, one way is holding a
read-lock for these maps and keep them in client side memory until the operations end, in this case, other users cannot

update these 16 maps, so the concurrency of the system is reduced. Another way is to lock a spatial object when it is
used, and the objects the maps contain don’t be kept in the client side memory, in this case, we need to read object from
the spatial database frequently and the system would become low efficiency.

2.2 Notification-Reread Method

The locking system in the traditional database management system is conventional. The basic premise is that the

inconsistency and imperfection of data is not allowed without considering how to solve the problem once it happens. To
a certain extent, the traditional database management system is very passive. In fact, if DBMS is able to feed back the
database update (adding, deletion, modification) of the committed transactions to the application programs, the

problems may be solved to a large extent.

Suppose we do some modifications to the locking mechanism as follows: data with a sharing lock may allows a

transaction (at most one transaction) to add an exclusive lock. This kind of modification will certainly cause the data
inconsistency. As Figure 1 shows, user one read data D for query, and hold them until client process ends, while user
two read data D for modification. Once the modification transaction is successfully committed, data in the database will
be inconsistent with the data on the client side of user one, because user one does not know the modification. In order to

avoid the situation, after the modification is successfully committed, the modified information must be feed back to user
one in order to keep the data consistency.

The key point of the improvement is to inform client side of the database modification promptly. Send client sides
related to the modified data a message so that client sides will reread the modified data after receiving the message. One
method is to reread all data, which will cause low efficiency of the system, however. The other method is to reread the

modified part of the data. It is demanded that the notification message should include information of the modified data.
In the object-oriented system, information of the modified data can be represented by object identification.

2.3 Realization of Notification-Reread Method

The notification-reread method must be supported by both DBMS and the client side. When implementing the method,
DBMS and the client programs should be improved accordingly.

2.3.1 Improvement of DBMS

Under the general circumstance of multi-user environment, DBMS on the server side should maintain the computer
number of client side, user number and process number etc. The key to realize the notification-reread method is to

inform the client process locking the data with a sharing mode about the modification information in time. An important
task of DBMS is to implement "notification". Therefore, when locking the data with read mode, besides recording the
type and status of the lock, it is required to know the client process number which manipulate the data. Thus, a more

complicated locking mechanism is needed. There are two methods to realize it. One is to record the relevant data object
locked with the sharing lock by means of client process number. The client process may be found according to the data
object on the contrary. The other is to record the relevant client process number by means of the data object. Then the

client process number may be found directly through the data object. The notification-reread method has increased the
budget of DBMS maintenance.

The processing of modification transaction of data D is as follows:
(1) Judge whether D has an exclusive lock. If yes, wait until D is unlocked;
(2) Judge whether D has a sharing lock. If yes, mark it as a sharing lock;

(3) Write-locks on data D;

Xinyan Zhu

1254 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

(4) Implement modification on the database;

(5) Commit the transaction. After it is committed successfully and before the transaction is finished, judge whether data

D has a sharing lock. If yes, make a “notification” , inform each client sides about the task according to the computer
number, user number, process number, data-use-range and current updated data object ID;

(6) End the transaction.

2.3.2 Improvement of Client Sides

The major task of the client sides of notification-reread method is to respond to the updated information sent by the
DBMS on the server promptly. Therefore, the client program needs a process to monitor the information sent from
DBMS. When data is to be found modified, the monitoring process records the ID of the modified data object in time

and informs the application program. The application program will reread the data according to the object ID after
receiving the notification.

The process of modification transaction of data D in client side is as follows:
(1) Read data in the database. Carry out client task processing and monitor the update notification sent by DBMS;
(2) If the notification of data update is received, reread the relevant modified data on database according to the

notification and update the data on the client side;
(3) If data D is to be updated, add an exclusive lock on it;
(4) Update the data;

(5) Commit the transaction.

3 INCONSISTENCY AFTER UNDO/REDO

In the GIS data management, graphics data take a big part. In the process of data modification, UNDO/REDO is an
important operation provided by the system. UNDO demands to cancel the previous modification, while REDO is to
cancel the last UNDO.

3.1 Inconsistency Caused by UNDO/REDO

In the circumstance that data D in Figure 1 is a folded line, the situation is shown in Figure 2. If a user wants to move
the coordinate of point 3, the point will turn to 3' after being moved. Suppose that there are two transactions as T1 and

T2. Inspect on the sequence in Figure 3(a), in which Tij represents the jth time of the ith transaction.

T11: T1 reads D. T11: T1 reads D.
T12: T1 write-locks on data D. T12: T1 write-locks on data D..
T13: T1 update data D. T13: T1 update data D.

T14: T1 commits. Unlock. T14: T1 commits. Unlock.
T21: T2 read-locks on data D. T21: T2 read-locks on data D.
T15: User 1 UNDO T15: User 1 UNDO

T31: T3 write-locks on data D. T31: T3 write-locks on data D.
T32: T3 recovers D. T32: T3 recovers D.
T33: T3 commits. Unlock. T33: T3 commits, T3 inform the relevant users.

T34: T3 unlocks.
T22: T2 rereads data D.

(a) An inconsistency caused by UNDO (b) Transaction sequence after improvement
Figure 3 . An inconsistency caused by UNDO operation and its improvement

1 3

 2

4

 5

3 ’

Figure 2. Move vertex 3 to 3 ’

Xinyan Zhu

1255International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

In the sequence shown in Figure 3(a), at the time of T15, since user 1 did the operation of UNDO, the data read by
transaction T2 is inconsistent with the data in the database. In fact, the operation of UNDO requires a modification
transaction as T3, whose process is similar to that of T12 to T14. If the result of UNDO has been inform to the user

application program before the UNDO operation is finished, the user application program will reread the relevant data.
Thus, the inconsistency has been solved. The transaction sequence is shown in Figure 3(b). The inconsistency caused by
REDO is as similar to UNDO. If UNDO/REDO operation is used frequently, frequent notification and reread are to be

brought about.

In the process from T31 to T34 in Figure 3(b), the transaction T3 is in fact implementing the UNDO operation of user 1.

The UNDO/REDO operation of a transaction has caused the recovery of the database update, the transaction may be
called an UNDO transaction or a REDO transaction, or an UNDO/REDO transaction. The roll-back of the
UNDO/REDO transaction is different from the common transactions. The roll-back of the common transactions is

generally before the transaction is committed, due to some reason, the database should go back to the status before the
transaction starts. However, to the UNDO/REDO transaction, because users have implemented the UNDO/REDO
operation, the database is forced to go back to the status before the transaction has been committed. An UNDO/REDO

transaction must correspond with a common transaction. It is the recovery transaction of this common transaction.

3.2 A Chain Reaction UNDO/REDO Transaction

The modification above is just a simple case. If take the object division and merge as well as the topological relations of
spatial objects into consideration, the situation will be more complicated. In Figure 4(a), there are five arcs and two
surfaces as S1 and S2 composed by the five arcs. Arc 1, 2 and 5 compose S1, while arc 5, 4 and 3 compose S2. Figure 4(b)

is the situation that arc 5 has been divided into arc 51 and arc 52. At the time, S1 is composed of arc 1, 2, 52 and 51, S2

is composed of arc 4, 3, 51 and 52. Figure 4(c) represents the situation that arc 52 has been divided into arc 521 and 522.
At the moment, S1 is composed of arc 1, 2, 522, 521 and 51, while S2 is composed of arc 521, 522, 4, 3 and 51. In the

modification process of this case, the division of a line and reconstruction of topological relations must be carried out in
one transaction so as to ensure the data consistency and accuracy.

Suppose that data D is the data block involving all data (including topological relation) of the case. Now take the

transaction sequence of Figure 5 into account.

At the T27 moment of this sequence, user 2 wants to implement the UNDO operation. As user 1 has modified data D
before user 2 carries out the UNDO operation, user 2 cannot implement the UNDO operation (add arc 51 and arc 52,

delete arc 5, reconstruct S1 and S2) directly on the modified data D. Otherwise, inconsistency and inaccuracy will be
caused, for arc 51 and 52 do not exist and the status of S1 and S2 has changed at the moment. In order that user 2 is able
to carry out the UNDO operation accurately (suppose the corresponding transaction as T'2), user 1 must implement the

UNDO operation firstly (suppose the corresponding transaction as T'1). Thus, a chain reaction UNDO/REDO
transaction is brought about.

Suppose there is an transaction sequence as T1, T2, …, Ti, …, Tn, in which some transactions are the UNDO/REDO
transactions of other transactions. As for the specified UNDO/REDO transaction Ti (1<i<=n), if another UNDO/REDO
transaction Tj (j<i) exists, Tj must be executed before TI, Then Tj is called the preorder UNDO/REDO transaction. In

the above sequence, if an UNDO/REDO transaction has a preorder UNDO/REDO transaction, a chain reaction
UNDO/REDO is engendered. Otherwise, this sequence does not have a chain reaction UNDO/REDO transaction. In the
chain reaction UNDO/REDO transaction, when a user is carrying out an UNDO/REDO operation, the most important

thing is to judge whether this UNDO/REDO transaction has a preorder UNDO/REDO transaction. If DBMS is to deal
with the chain reaction UNDO/REDO transaction automatically, a more complicated control system is required, which
has proposed a new research topic for the spatial data management system.

 2 2 2

 1 s1 1 s1 1 s1

 5 52 521 522

s2 4 51 s2 4 51 s2 4

 3 3 3

Figure 4. Object splitting with topology

Xinyan Zhu

1256 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

T11: T1 read-locks on D.
T21: T2 read-locks on D.
T22: T2 write-locks on D.

T23: T2 modifies data D (add arc 51 and 52, reconstruct S1 and S2, see Figure 4(b))
T24: T2 commits and sends the modification notification.
T25: T2 ends.

T12: User 1 rereads data D.
T13: T1 write-locks on D.
T14: T1 modifies data D (add arc 521 and 522, delete arc 52, reconstruct S1 and S2, see Figure 4(c))

T15: T1 commits and sends the modification notification.
T16: T1 ends.
T26: User 2 rereads data D.

T27: User 2 carries out UNDO.
T171:
T172:

T173:
T281:
T282:

T283:
T284:

Figure 5. A chain reaction of UNDO/REDO transaction

4 CONCLUSIONS

In order to satisfy the GIS data sharing demanded by multiple users, spatial database management system has to solve
the problem of data consistency in a multi-user environment. To the update causing the data inconsistency ,

"Notification-Reread Method" requires DBMS send a "notification", the client program will "reread" according to the
"notification". With regard to the data inconsistency caused by the UNDO/REDO operation, if there is no chain reaction
of UNDO/REDO transaction, the "Notification-Reread Method" may settle the problem. Otherwise, further research

works should be done on the system.

The "Notification-Reread Method" needs the support from both spatial database management system and customer

programs. The spatial database management system needs to know information as user's computer number, user number,
process number, data-use-range and the ID of the currently updated data object.

REFERNENCES

John G. Hughes, 1988, DATABASE TECHNOLOGY: A Software Engineering Approach, PRENTICE HALL, NEW
YORK.

D. AGRAWAL AND A. EL ABBADI, 1994, “A Nonrestrictive Concurrency Control Protocol for Object-Oriented
Databases ”, DISTRIBUTED AND PARALLEL DATABASE OBJECTED MANAGEMENT, edited by Elisa Bertino
and M. Tamer Qzsu, KLUWER ACADEMIC PUBLISHERS, Boston.

Yucai FENG, 1993,The Fundamental of Database System, Wuhan Science and Engineering University of Central China
Press, 2nd Version.

Burrogh P A. , 1986, Principles of Geographical Information System, For Land Resources Assessment. Oxford:
Clarendon Press.

T1’ write -locks on D.
T1’ recovers the modification done by T1.
T1’ commits and sends the modification notification.
User 2 rereads data D and recovers to the status before T1 modification.
T2’ write -locks on D.
T2’ recovers the modification done by T2.
T2’ commits and sends the modification notification.

Xinyan Zhu

	Book4B.pdf
	Book4C.pdf
	Xinyan Zhu

