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ABSTRACT: 
 
The new microchip and sensor technology, charged couple device (CCD), has assumed a permanent position as the natural 
transducer for optical input to a computer. The CCD combined with the microcomputer have revolutionised the whole 
discipline of observational astronomy at all stages from data gathering to data analysis, presentation and use. Not only has it 
brought the convenience of digital imaging to field astronomy but has also great potential in determining very accurate 
astronomic co-ordinates of a point at great speed and ease, compatible to GPS for the determination of deflection of the 
vertical and local or precise geoids. Despite the numerous advantages of the CCD in astronomical work most CCD users 
agree that individual devices have imperfections or various problems that have to be dealt with. In using CCD in geodetic 
astronomy one major problem that has to be considered is whether the measuring accuracy of the image co-ordinates will be 
enough for the determination of astronomic latitude or longitude. Just clicking on a star object in a digital image to determine 
its position in the image yields pixel accuracy. But to meet geodetic accuracies, sub-pixel accuracies are required. In this 
work we employed least squares smoothing techniques on data obtained from astronomical observations using CCD zenith 
camera. The star image co-ordinates were estimated using the two main methods of centroid estimation, viz., moment 
analysis and PSF fitting. This paper compares these two methods of estimating image co-ordinates to sub-pixel level and 
their accuracies. Results so far indicate that star image measurement accuracies better than 0.3 arcsecond can be obtained. 
They also show that PSF fitting method is more adaptive to automation. 
 
1. Introduction 

 
Stars are point sources. However the image formed of stars 
by focussing through a lens is not a point but a blurred spot. 
Thus point sources emit  light which is processed by the 
optical system, because of  diffraction (and the possible 
presence of aberation) (Kovalevsky, 1995), this light is 
smeared out into some sort of blur spot over a finite area on 
the image plane rather than focus to a point (Jain, 1989). 
When this patch is scanned the distribution of intensities can 
be discribed by a mathematical function. This function is 
known as the point spread funtion (PSF) of the lens. It is the 
impulse response of the system whether it is optically perfect 
or not. In a well corrected system, apart from a multiplicative 
constant the PSF is the Airy irradiance distribution function 
(Longhurst, 1967) centred in the Gausian image point. The 
value of the spread function depends only on the 
displacement of that location from the particular image point 
on which the PSF is centred (Bove, 1993;  Horn, 1986). 
  
For an object spread across an area or several pixels the 
object is no more just a point. We must therefore give a 
precise meaning to the term ‘co-ordinates’ or ‘position’. In 
order to determine the co-ordinate of the object, the centre of 
area is chosen as the representative position. The centre of 
area is estimated by the centre of mass or centroid of the 
object. Also determining the position of a star by just taking 

(clicking on) the position of its maximum intensity would at 
best give the  precision of measurement to one pixel.  It is 
therefore highly preferable to determine the centre of mass or 
centroid (Eisfeller and Hein, 1994; Buil, 1991). 
 
The concept of estimation in image processing relates to the 
evaluation of image parameters, that is, considered to be 
relevant to the characterisation of the objects in the image. 
Thus our image analysis problem will involve measurements 
of certain characteristics of the image. These include; 
1 intensity 
2 geometric  features 
3 centroid. 
 
1.1  Geometric  Features 
 
These include the following; 
 
LENGTH : The length of a line (L) in a discrete 
image is the distance between the centres of the pixels. 
 

L d= − 1                              (1) 
 
where d is the number of pixels the line covers. If an object 
occupies one pixel, its length is zero. 
 



 
 

 

PERIMETER: The perimeter (P) is equal to the sum of 
the side lengths. 
 

P side lengths=�             (2) 

 
AREA (A): This is equal to the sum of all the pixels 
covered by the object. That is, area of an object in a digital 
image is the number of points in the object. Thus we can 
compute the area of the object by simply scamnning these 
points 
 
A = total number of pixels       (3) 
 
Measurement of perimeter or area are only meaningful 
provided area > perimeter ( for calculations to be accurate). If 
object is larger than one pixel the better the area 
measurement. Thus for better centroid estimation the image 
should be spread over 2 or more pixels. 
 

2. Principles of Centroiding 
 
There are two basic techniques used to estimate the centroid 
of a star object. They are; 
1 the image moment analysis   
2 profile fitting or point spread function (PSF) fitting.  
 
 
2.1 IMAGE MOMENTS 
  
When a set of values has a tendency to cluster arround some 
particular value, then it may be useful to characterize the set 
by a few numbers that are related to its moments, the sums of 
integer powers of the values (Horn 1986 pp.34, Press et al 
1992 pp. 610-613). If  an object in an image is defined by the 
function B(x,y), then the moments generated by this function 
give interesting features of the object. For digital images the 
(k+L)th order is defined by Papoulus thorem (Gonzallez and 
Wintz 1987 pp. 421).  
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The total intensity of the image is given by B00

. We find 

that moments depend on the intensity or grey level. One 
important thing about moment features of objects is that they 
can be used regardless of location in the image and size of 
the object. Image moments include the following; cetre of 
mass, variance and orientation. 
 
CENTRE OF MASS: If we regard the intensity or 
grey level B(x,y) at each point (x,y) of the given image (B) as 
the ‘’mass“ of (x,y), we can define the centroid ( centre of 
mass) as well as the other moments of B. It is that point 
where all the mass of an object could be concentrated without 
changing the first moment of the object about any axis. The 
centre of mass is the centre of area of a figure which in 
practice is chosen as the position of the figure. In the two 
dimensional case, the center of mass is given by  (B10, B01). 
 

( )
( )

B x B x y B

B y B x y B
10 00

01 00

=
=

��
��

,

,
 

 

VARIANCE ( )σ 2 : This is given by the second moment 

about the centre of mass ( )BKL
C  
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σ x
2  characterises the extension or spread of the object in the 

x direction. 
 
ORIENTATION (�): This is defined as the angle of axis of 
the least moment of inertia. It determines how the object lies 
in the field of view (Horn 1986 pp. 49). The orientation of an 
image is given by (ibid. pp. 54): 
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For a circular object orientation is 0 as it is isotropic. From 
the above equations the position, variance and orientation of 
an object can be calculated using first and second moments 
only. These moments are invariant under linear co-ordinate 
transformations (Jain 1989 pp. 381). Thus we do not need the 
original image to obtain the first and second moments. 
Projections of the image are sufficient. This is of great 
interest since the projections are more compact and suggest 
faster algorithms (Horn 1986 pp.54). Existing literature gives 
the accuracy of  the simple moment centroiding algorithm  to 
be between 0.05 to 0.1 pixel (Schildknecht 1994, 
Chubunichev  pp.152-153). 
 
2.2 PSF Fitting 
 
The basic principle in this technique is that all images of stars 
on a CCD frame have, baring distortion introduced by the 
camera optics, the same form but differ from one another in 
intensity or scaling ratio and postion. (Teuber, 1993). Thus 
fitting a suitable defined PSF to a series of images will give 
relative magnitudes 
 

( )m zpt scaling ratio= − 2 5. log      (9) 



 
 

 

 
where zpt is the magnitude assigned to the PSF. 
Mathematical curves are fitted to the real data untill a good 
match is obtained. The parameters determined are the 
position and the scaling ratio. The mathematical equation 
used to model the profile of the stellar image is usually the 
Gaussian function (Buil, 1991). 
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where: 
 r is the radius with respect to the centre of 
the star image 
 σ is a parameter characterizing the stars 
spreading 
 I(0)  is the maximum intensity 
Linearizing equation (10) we get 
 

( ) ( )ln lnI r I br= +0 2              (11) 

. 
The equation above  is of the form Y = A + BX. The 
coefficients (A,B) can be  estimated by linear regression from 
(X,Y) pairs.  
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Expressing r in terms of image co-ordinates gives  
 

( ) ( )r x x y yi i i
2

0
2

0
2= − + −              (13) 

 
Replacing r in equation (11) by equation (13) we get. 
 

( ) ( ) ( ) ( )[ ]ln lnI r I b x x y yi i i− = − + −0 0
2

0
2                                                                    

                                                           (14) 
 
The above eqaution can be written as 
 

E c c x c y c x c xi i i i i= + + + +0 1 2 3
2

4
2       (15) 

 
where Ei = ln I(ri) + ln I(0), i is the pixel number and (xi,yi) 
are pixel co-ordinates;. The centroid, (x0,y0), of the image is 
computed after solving for the coefficients, cj (j=0...4) of 
equation (15) using the least squares criterion. Differentiating 
(15) and using the neccesary conditions for extremum gives; 
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putting x =x0 and y =y0 in (59)  we get 
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It is obvious from equation (15) that the PSF fitting method, 
unlike moment analysis, can only be used when  the star 
image is  spread over more than four pixels. However the 
process can be easily extended to fitting many images 
simultaneously. This allows position determination in a much 
more crowded situation and complete automation of the 
whole process. It is said to give better accuracy than the 
moment analysis method (Schildknecht, 1994). Thus for 
accuracies better than 0.05 one has to use the PSF fitting 
method. Theortical estimations by Eisfeller and Hein 
(Eisfeller and Hein, 1994) using the PSF fitting method gave 
accuracies of the order of 0.05 to 0.15 of a pixel. 
 
 

3. ImageCo-ordinate Measurements 
 
In this experiment centroids of real star objects were 
determined using both the moment analysis and PSF fitting 
methods and analyzed:  
A To find out the measuring accuracy of CCD co-

ordinates of star images that can be achieved in 
practice.  

B To compare the two methods  
 
In this work images were taking using the IFEN CCD 
integrated telescope with exposure times ranging from 1 to 3 
seconds and the telescope pointing to the zenith. These 
exposure times were found to be optimum, in terms of 
avoidng trails and obtaining good signal-to-noise ratios, after 
many trials. All the sets of images were multiple images of 
four. The sequence of  operations described below were 
followed throughtout the observations; 
 
1 Set up the instrument 
2 Check instruction status from                            

operator 
3 Prepare the CCD - unrecorded readouts to flush 
4 Open the shutter for a time period 
5 Close the shutter 
6 Readout the CCD according to a precise pattern 
7 Digitize the signal from each pixel  
8 Store the data in a computer  
9 Return the CCD to a standby mode if appropriate. 
 



 
 

 

Apart from 1 and 2 all the other events occured in time 
sequence under computer control. 
 
The images were calibrated based on equation (18) below 
(Buil, 1991) and then median filtered (Teuber, 1993;  Raab, 
1996), to smooth or minimize image noise , after which the 
centroid of star objects were measured. 
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( ) ( )I x y t K
I x y t N x y t

F x y t N x y t
c

o
, ,

, , , ,
, , , ,

=
−
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where 

t is the integration time of the image to be   reduced 
t’ is integration time of the flat-field 
N(x,y,t) is  the dark map of the image to be reduced 
N’(x,y,t) is the dark map of the flat-field 
K is the multiplicative coeeficient - It is equal to the  the 
average intensity of the flat-field. It allows us to find, 
approximately, the initial level of the reduced image. 
  
One of the images used for the analysis is shown in figure 1 
below. The common images in every multiple image  was 
identified and their co-ordinates measured. 

 
 

  
 

Figure 1: CCD250_2 a 2.5 sec. exposure image after calibration and median filtering 
 
 
Two sets of observations were used. The centroids in the 
first set, found in table 4, were determined with the 
moment analysis software, astrometrica, developed by 
Raab (Raab, 1996) while the second set made up of 17 
multiple images taking under 45 minutes found in table 5 
were determined by both moment analysis and PSF 
fitting methods using astrometrica and the CCD software 
developed by Ploner (Ploner, 1996) respectively. The 
PSF fitting method was found to be more adaptive to 
geodetic use. 
 

4. Analysis of  Results 
 
Before the analysis the image co-ordinates which were 
given in pixels were converted to sensor co-ordinate, also 
in pixels, using the following expresions. 
 

measuredrow
rowstotal

ordinatecosensory

columnstotal
measuredcolumnordinatecosensorx

−=−−

−=−−

2

2
     (19)                          

  
 
It is pertinent to note that the images were taken 
independently and secondly the stars were in motion. In 
order to analyse these images they were registered or 
transformed to the same datum using the two-dimensional 
similarity transformation. The transformation also gives 

mean positions ( )x yj
m

j
m, , of the common points in the 

new co-ordinate system.These serve as approximate co-
ordinates in the least squares computations described 
below. 
 
4.1 Computations 
 
Our basic mathemathical model, equation (17), is of the 
form 
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Similarly we have  
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computed image co-ordinates. 
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Substituting equation (23) into (20 ) combining with (21) 
and rearranging we get the observation equation 
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This is of the form  

cL L AdX− =                               (25) 

As there were more observations than unknowns, the 
system of equations produced an overdetermined 
problem. The least squares criterion was applied by 
introducing residuals or improvements v to the 
observations or measured co-ordinates L 

( )v AdX L L AdX bc
= − = −−     (26) 

where 
 v is vector of residuals 
 dX is vector of corrections or unknowns 
 A is the design matrix 
 L, Lc are measured and computed image 
co-odinates 
 b is the vector of reduced measurements 
(" "observed computed− ) 

 
From the observation equations normal equations were 
formd with weights (W) obtained from the differences 

between the transformed image co-odintes and their mean 
co-ordinates  in the common datum.  
 
ATWAdX = ATWb             (27) 
 
It is pertinent to note that the adjusted quantities are 
rather insensitive with respect to the chosen weighs but 
the estimates of their accuracies depend on them.  
 
After the solution of the normal equations, using 
Cholesky’s method, the residuals were computed from 
equation (26). From the residuals, the unit variance 
(σ

0

2 ) was computed from the formula: 

 σ 0
2 =

−

Tv Wv
n u

                    (28) 

 
where n is the number of  observation equations u is the 
number of unknowns. σ0 is t-distributed with degree of 
freedom (n-u) (Cross, 1990). It was used to test our 
model assumptions. If the number of common points is p, 
and the number of images m then  n p m= ⋅ ⋅2   and  

u p= ⋅2 . The covariance matrix (Cxx) of the 

unknowns were given by: 
 

xx xxC Q= σ 0
2                      (29) 

 
here Qxx  = (ATWA)-1. The standard errors of the 
estimated image co-ordinates were obtained by taking the 
square roots of the diagonal elements of Cxx. An output 
of the computer program developed for the computations 
is shown in tables 1 to 3.  The mean of the standard errors 
for every multiple image were calculated. 

 
 
 
 

Table 1: Registration of images from a multiple exposure (CCD250) 
 

tran sfo rm a tio n  c o effic ie n ts

p a ram ete rs C C D 2 5 0 _ 1 C C D 2 5 0 _ 2 C C D 2 5 0 _ 3 C C D 2 5 0 _ 4

a

b

e

f

0 .9 9 9 9 8 9 1 .0 0 0 7 6 4 1 .0 0 1 0 9 5 1 .0 0 1 1 4 7

0 .0 0 0 0 0 0 0 .0 0 0 6 5 0 0 .0 0 1 2 6 9 0 .0 0 1 2 5 3

0 .0 0 2 4 6 3 .1 4 1 6 1 2 5 .7 4 7 6 1 8 6 .3 8 6 7

0 .0 0 0 8 1 .2 1 4 6 2 .1 1 3 8 3 .0 4 4 3
 



 
 

 

Table 2: mean co-ordinates of common points obtained from registration of CCD250 
 

   1       - 8 9 .5 0 8 5 0 4          1 6 1 .7 0 2 2 3 5

   2       7 7 5 .3 7 7 3 6 7         - 2 5 0 .0 6 7 4 8 8

   3       - 4 6 .6 0 3 0 5 6          - 1 0 7 .2 2 6 8 5 3

   4       - 1 8 1 .7 0 9 2 2 6        - 2 5 4 .3 6 2 8 8 7

   5       1 0 0 0 .7 5 4 8 3 5       - 1 9 3 .5 7 6 4 5 9

   6       2 2 .0 8 3 4 6 7            - 1 9 .7 0 1 7 5 9

   7        3 1 4 .4 3 0 0 9 0         - 1 5 2 .7 4 4 9 4 5

   8       - 2 3 1 .2 9 5 0 3 6         1 1 3 .9 5 1 1 2 3

  9       - 5 7 1 .9 8 8 8 3 0          3 3 5 .3 0 2 4 5 4

  1 0      1 5 8 .2 0 2 0 9 7          - 4 4 7 .4 7 7 2 6 2

 1 1       2 1 3 .4 7 3 2 6 1          3 9 7 .9 1 9 0 3 0

 1 2       - 3 0 8 .9 0 8 8 3 1         - 2 5 9 .8 3 4 3 2 6

 1 3       7 3 4 .4 7 0 8 8 2          - 1 5 1 .2 9 0 1 3 4

N ö .
a p p r o x im a te  c o - o r d i n a te s

x y

 
 
 

Table 3: LSEs of image co-ordinates and their standard errors in pixels 
 

-8 9 .2 2 5 9 7       1 6 1 .6 1 3 8 5 1       0 .0 7 8 8 5 4      0 .1 0 0 7 4 6
7 7 4 .7 4 0 1 3      - 2 4 9 .9 7 4 2 0 4      0 .1 4 4 4          0 .0 5 8 4 6 7
-4 6 .5 5 5 3 0 6     -1 0 7 .1 6 9 8 1 1      0 .1 3 4 9 6 6      0 .0 7 0 1 9 3
-1 8 1 .1 3 8 9 1     -2 5 4 .1 2 2 3 1 1      0 .1 0 4 1 0 6      0 .0 7 8 8 3 8
1 0 0 0 .1 1 3 6 8     - 1 9 3 .2 4 5 0 4      0 .5 9 7 2 2 8       0 .0 7 8 4 6 5
2 2 .1 2 9 9 8 5       - 1 9 .7 4 4 2 2 2       0 .0 8 0 5 1 6      0 .1 2 0 4 5 2
3 1 4 .3 7 6 7 2 8     - 1 5 2 .7 2 9 3 2     0 .2 6 2 6 2 3        0 .1 1 1 3 5 7
-2 3 0 .5 4 8 7 3     1 1 3 .8 9 4 4 8 3      0 .0 8 2 1 3 2       0 .0 7 4 8 7 9
-5 7 1 .3 0 5 7 0 9   3 3 4 .9 1 6 2 4 1      0 .1 6 8 5 3 9       0 .2 3 7 8 4 9
1 5 8 .1 9 8 3 9 7    - 4 4 6 .8 1 1 0 7 5     0 .1 4 9 1 7 4       0 .0 5 7 9 5 1
2 1 3 .4 3 2 4 1 9    3 9 7 .5 6 1 9 4 9     0 .2 5 5 6 3          0 .4 6 7 4 5
-3 0 8 .4 6 8 7 8 3   -2 5 9 .4 9 2 9 3     0 .1 7 1 3 6 9        0 .2 3 1 9 0 6
7 3 3 .7 2 8 2 2 1    - 1 5 1 .2 9 2 1 4     0 .5 7 2 6 5 4        0 .0 8 0 9 3 7

m e a n  s td . e r ro r  in  x :  0 .2 1 5 5 5 3  
m e a n  s td . e r ro r  in  y :  0 .1 3 6 1 1 4

x y s td . e r ro r  
in  x

s td . e r ro r  
in  y

N o .

1
2
3
4

5
6
7
8

9
1 0
1 1
1 2
1 3

U N IT   V A R IA N C E  =  0 .9 8 8 8   S Q R T (  U N IT  V A R IA N C E )  =  0 .9 9 4 4

 
 
The results of the experiment are shown in table 4 and 5. 



 
 

 

 
Table 4: Precision of centroid determinations from moment analysis method 

 

image name Date

11.11.96

Exp.time
in secs.

No. of 
common 
objects

Unit
variance
    σo

2

mean standard  errors
           (in pixels)

     σx    σy

CCDF100    2      8

CCDF201 10.02.97 1    12

CCDF212 23.02.97 2    12

CCDF302 23.02.97 2    12

CCDF303 23.02.97 2  10

CCDF116* 23.02.97 1.6 8

CCDF224* 23.02.97 2.4

CCDF225 23.02.97

CCDF228 23.02.97

2.5

2.8

  8

   8  

8

1.03 0.18 0.13

1.08  0.32   0.29

1.04 0.12 0.10

1.04 0.16 0.13

1.02 0.19 0.10

1.05 0.44 0.43

2.94 0.89  0.84
1.02 0.35 0.34

1.04 0.37 0.33
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Figure 2A: Relation between    image co-ordinate 
accuracies and exposure time  from PSF fitting                
 

Figure 2B: Relation between image co-ordinate 
accuracies and expoxure time from moment analysis

 
 
 
 
 
 

 
 
 
 
 

 



 
 

 

Table 5: Precision of centroid determinations from moment analysis and PSF fitting metho
 

Serial
No.

Image name

Time of
observation
(UTC)

Exp.
time 
(secs)

Moment analysis (in Pixels) Psf fitting (in Pixels)

σo
2

σx σy
σo

2 σx σy

1 CCD101* 1 0.99  0.47 0.46 1.03 0.32 0.39
2 CCD120* 1.2 1.23   0..56 0..53 1.09 0.40 0.37
3 CCD150 1.5 0.27   0.29 1.10 0.09 0.15
4

1.03
CCD180*   1.8   1.04  0.37 0.40 1.04 0.34 0.24

CCD200* 2 1.27  0.61 0.60 1.04 0.43 0.426
CCD201* 2 1.48 0.45 0.43 1.09 0.17 0.217

CCD220 2.2    0.98 0.21 0.11 1.05 0.25 0.198

CCD221 2.2 0.99 0.23 0.23 - - -9
CCD250 2.5 1.10 0.19 0.23 1.02 0.22 0.1410

CCD251 2.5 1.05 0.14 0.14 1.05 0.14 0.1111

CCD280 2.8 1.05 0.17 0.10 - - -12

CCD281 2.813
CCD301 3

1.04 0.23 0.15 1.01 0.20 0.16
1.02 0.18 0.13 1.04 0.36 0.2914

15 CCD253 2.5 1.09 0.23 0.19 1.03 0.26 0.18
16 CCD103 1 0.99 0.23 0.23 1.03 0.16 0.10

CCD153 1.5 1.03 0.18 0.22 0.99 0.22 0.18

  21:45:59
21:47:59

  21:57:59
  21:59:54

5 CCD181 1.8 1.01 0.24 0.24 1.01 0.21 0.1822:01:19

17

22:02:32
22:03:59

22:09:51
22:10:58
22:13:34

22:12:11

22:13:11

22:16:19
22:18:33

22:19:58
22:24:06

22:28:17

 
 
 

This corresponds to an accuracy better than 0.3 arcsecond 
for  imaging systems of focal length greater than or equal 
to 80 cm. and pixel size of 10µm. The effect of the 
apparent cloudy weather on the standard errors shown in 
table 4 an 5 and the erratic behavoiur of the graphs above 
indicates that one of the main limiting factors of the 
centroid determination of star objects is the prevailing 
weather condition rather than the method used. however 
it appears the the moment analysis method is more prone 
to bad weather.  
 

5. Conclusion 
 
The above experiment, analysis and results show that an 
accuracy of 0.1 pixel can be achieved and that there is no 
significant differnce in the accuracy that can be achieved 
between the two main methods of centroid estimation, 
viz, moment analysis and PSF fitting. It also confirms the 
theoretical findings mentioned in section[2.2]. This 
indicates that it is possible to obtain image measurement 
accuracies  better than the ±0.3 arcsecond required for 
astro-geodetic determinations using portable telelescopes, 
i.e., focal lengths between 80 and 150 cms. The analysis 
also showed that centroid estimates deteriorates with bad 
or cloudy weather more seroiusly  in the case of moment 

anylsis. Furthermore during the centroid measurements it 
was found that the PSF fitting method is more adaptive to 
automation. 
 
References 
 
1. Bove, V.M. Jr. (1993); Entropy based depth of 

focus. Journal of Optical Society of 
AmericaVol. 10 No. 10 

 
2. Buil, C. (1991); CCD Astronomy : CCD 

Astronomy, construction and use of an 
Astronomical CCD Camera. William-Bell Inc. 
Virginia. 

 
3. Chubunichev, A.; Algorithms of digital target 

location and their investigations. ISPRS Journal 
Vol. XXIX Commision V 

 
4. Cross, P.A. (1990); Advanced least squares 

applied to position fixing (working papers). 
North East London Polytechnic. 

 
5. Eisfeller B., G.W.Hein; (1994); Astrogeodetic 

levelling with an Integrated DGPS/CCD star 



 
 

 

camera system. Proccediings of the 
International Symposium  on Navigation (KISS 
94) Calgary Canada. 

 
6. Horn, B. K. P. (1986); Robot vision.The MIT 

Press, Massachussets. 
 
7. Gonzallez,  R.C., P. Wintz (1987); Digital 

image processing. Addison Welsley Publishing 
Co. 

 
8. Jain, A. K. (1989); Fundamentals of image 

processing. Prentice Hall Inc., New Jersey 
 
9. Kovalevsky, J. (1995); Modern Astronomy. 

Springler Verlag, Berlin Heidelberg  
 
10. Longhurst, R. S. (1967); Geometrical and 

Physical Optics. Longmans, London. 

 
11. Press, W. H., W.T. Vetterling, S.A. 

Teukolsky, B.P. Flannery (1995); Numerical 
recipes in C. Cambrdge University Press. 

 
12. Ploner, Martin (1996); CCD-Astronomie von 

objekten des geostatiären ringes. 
Geowissenschaftliche Mitteilungen Heft 46. 
Technical University Vienna. 

 
13. Raab, H. (1996): Astrometrica software 

version 3.1 
 
14. Schildknecht, T. (1994); Optical astronomy of 

fast moving objects using CCD detectors. Swiss 
Geodetic Commission. 

 
15. Teuber, J. (1993); Digital image processing . 

Prentice Hall International (UK)
 


