
PYRAMID MANAGEMENT AND REAL-TIME VISUALIZATION OF MASSIVE
3-DIMENSIONAL TERRAIN DATA

KE Xi-lina, b , GUO Qing-shenga, LI He-yuanb, CHEN Gangb , GAO Pingc, ZHOU Yanb, HUANG Li-minb

aSchool of Resource and Environment Science, Wuhan University, Wuhan, China - chauchl@163.com,guoqingsheng@126.com

bXi’an Research Institute of Surveying and Mapping, Xi’an, China
cWuhan Ordnance n.c.o Academey, Wuhan, China - gaoping1220@163.com

KEY WORDS: Visualization, Level of Detail, Computer Vision, Simulation, Geography

ABSTRACT:

3-Dimensional terrain visualization has been widely used in the fields, such as games, geographic information system (GIS), remote
sensing (RS) and virtual reality (VR). Rendering large scale 3D terrain interactively is now becoming a hot research topic for the fast
growing application of 3D terrain visualization. There is a conflict between massive 3D terrain data and its fast rendering. On one
hand the visualization of terrain scene is expected to be in the interactive frame rates without any delay, on the other hand the terrain
scene is expected to be large enough to meet the need of understanding the environment without compromising visual quality. From
the above mentioned, massive 3D terrain data and texture memory management become the performance bottleneck in the
visualization of large scale terrain. The terrain rendering load must be controlled by reducing the number of rendered primitives using
LoD(level-of-detail) techniques, adaptive extraction of LoD meshes, pyramid management of DEM(digital elevation model) and
DOM(digital orthograph model) and real-time loading and rendering of massive 3-D terrain data. In this paper we will investigate and
discuss the approaches, the pyramid management and rendering of massive 3-D terrain data in interactive frame rates.

1 INTRODUCTION

Interactive visualization of very large scale terrain data leads to
several efficient problems. In the case of terrain visualization,
the scene parts which can be seen are only small parts of the
whole terrain. To improve the rendering performance, the
terrain should be divided into several parts, according to their
coordinate in the whole terrain. Through subdivision of the
whole terrain, not the whole terrain but the visible terrain parts
in the scene view are loaded into the view scene.

Apart from the subdivision of the whole terrain, the blocks
which can be seen will not be in the same resolution for the
different distance to the view point. So in the visualization of
large scale terrain, scene clipping according to the field of
view(FOV) and view-dependent simplification can improve the
terrain rendering velocity and will not lose any rendering image
quality.

The basic requirements are very important for massive 3-D
terrain data management and visualization. They are as follows:
1) easy to manage the regular terrain with massive data
2) easy to search the appropriate terrain blocks in visualization
3) easy to load and unload the terrain data
4) easy to get the appropriate LoD terrain data of the same block
5) easy to render the massive terrain data in interactive frame
rates with better precision

To meet the above-mentioned requirements in rendering the
massive 3-D terrain data, pyramid management and dynamic
loading of the terrain data is implemented. Using the pyramid
management of the terrain data, multi-resolution terrain data,
including DEM and DOM, are created based on the original
data. On the foundation of the multi-resolution terrain data,
continuous level-of-detail (CLoD) quadtree have been used to
efficiently render the massive terrain data.

The paper is organized as follows. In section 2 we briefly
review some related work on the large scale terrain rendering.
Section 3 presents the detailed discussion of pyramid
management techniques of terrain data and the dynamic loading
and rendering methods of the terrain data, and section 4
discusses the programming test. The paper is concluded with a
summary and outlook in section 5.

2 RELATED WORKS

In this section, a number of approaches developed over the past
decades on real-time rendering of the massive terrain data are
briefly introduced.

Lindstrom et al(1996) proposed the first real-time continuous
level of detail terrain rendering algorithm. Lindstrom’s
algorithm is a block based on a bottom-up strategy. It first
assesses the level of the block according to screen projection
error metric, and it inserts those vertices which have a larger
delta value than some threshold. To eliminate cracks between
adjacent nodes with different levels, Lindstrom suggested
adjacent blocks share vertices on their boundaries. The
algorithm can exploit the coherence between frames to reduce
the number of processed vertices per frame. It generates result
meshes based on quadtree subdivision and the vertices chosen
in the previous step. It proves to be an effective way to evaluate
the importance of vertices in the original sampling grid.

In 1997, Duchaineauy et al can render his terrain with Real-time
Optimally Adapting Meshes. Since ROAM has been widely
used in games. ROAM learned much from Lindstrom’s
algorithm and it’s much faster. ROAM performs triangle
splitting and merging based on triangle tree structure, which is
somehow similar to Lindstrom’s binary vertex emphasized on
bottom-up algorithm, ROAM uses a splitting diamond queue
and a merging diamond queue to progressively updates in the
well as other error metrics. The algorithm is error bound, it

991

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

guarantees the priority to be monotonous while doing a
top-down subdivision. Besides its strict error control it can
have an explicit control over triangle numbers and LOS(Line of
Site). The algorithm exploits more of the coherence between
frames and can maintain a rather stable frame rates.

The above-mentioned work is an overview of real-time terrain
rendering algorithms. There are also some other algorithms, for
example Rottger’s (1998) real-time generation of continuous
levels of detail for height fields, Hoppe’s(1998) smooth
view-dependent level-of-detail control to terrain rendering and
Jonathan’s(2000) terrain rendering at high levels of detail.
These methods differ more or less from each other, but they
have something in common, such as view frustum culling and
LoD method and crack eliminating, in similar way.

3 PYRAMID HIERARCHY MODEL

3.1 Multi-resolution hierarchy model

Pyramid data model is created based on the pre-process of the
terrain data and the image data, the strategy is building a
multi-resolution data model, including the DEM and DOM data.
The highest level is given level 0, with the smallest resolution
in the data; the lower the level is, the higher the data resolution
is. The resolution of data in lowest level is the resolution of the
original data.

Provided that the horizontal range of the terrain is from
dblMinCol to dblMaxCol and the vertical range of the terrain is
from dblMinRow to dblMaxRow, the terrain root node number
is M×N, the node size of the terrain is (2n +1)×(2n +1),
generally 17×17 or 33×33. There is a common adjacent edge
between the neighboring terrain nodes.

For texture DOM data, the size of the image data is compulsory
set to be 2k×2m, generally 256×256 or 512×512.

If the current terrain level is ι,then the terrain resolution at
levelιin horizontal and vertical can be computed by:

Using the fixed root node, the resolution ratio of the DEM to
DOM is 1 to 16 or 1 to 32. To affirm the rendering effect, the
resolution of the horizontal and vertical direction had better
have a consistent ratio.

The terrain block number is quadruple to that of the next higher
LoD model, et al. The blocks are encoded with quadtree
hierarchy code.

LoD 0

2×

1blocks

LoD 1

4×

blocks

Figure 2. Leveling and blocking strategy on pyramid hierarchy

2blocks

LoD k

(2
k
+1)×2

k

Level 0

Level 1

Level 2

…………

Level n

In data management, Quadtree structure is an effect method. In
Quadtree structure, the node number in the lower is quadruple
to the number of the higher level.

Figure 3 Quadtree structure in the management of
The terrain data

Figure 1. Pyramid Hierarchy Model

In figure 4, the quadtree hierarchy levels are demonstrated.
With the root being level 0, given the grid size dimension n =
2k+1 and points Pi,j;i,j = 0,1,…n-1, the points on lower levelsι

 0 are given by Lι=≥ { Pi,j|hι = 0,1,…,2ι;i,j∈{ 0,d

ι ,… ,hι • ⋅ dι } ∧ Pi,j Lι -1 . Note that the
resolution d ι = (n-1) / 2 ι is level dependent. The
center-vertices Lι center denote points of Lιwhich are

∉ }
n

nN
dblMinColdblMaxColColSpace

22
)(

ι ××
−

=

M
dblMinRowdblMaxRowRowSpace

22
)(

ι ××
−

=

992

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

located in the center of a quadtree block on levelι- 1(white
point in Figure 3).

3.2 Multi-level texture compressing techniques

In rendering the massive terrain data, the amount of DEM data
is very large, the amount of DOM data is also very large. If the
original resolution DOM data is used in visualization of the
massive terrain data, the data would be excessive to the
computer memory and lead to render the data in slow frame
rates. And in rendering the terrain with high resolution DOM
data, it is not suitable for view custom, for the scene with
different view distance has different view effect. In effect, the
scene near to view will be seen in detail and that far distant to
the view is rough. So for texture image data, LoD technique is
also applicable and useful.

In this paper, the texture data is processed with multi-level
blocking. First the texture is blocked on the terrain scope and
its location. Then each block of the texture data is processed
with multi-level, using the resolution as 256×256,128×
128,64×64,32×32,16×16. The resolution of the texture
block is depended on its distance to the view, far with lower
resolution and near with higher resolution.

Even with multi-level texture, the texture data capacity of a
terrain block is about 256KB. If a scene covers almost 60
terrain blocks, the texture needing to be dealt with would be
exceed 15MB. The reality is that the terrain block number will
be much more than 60, so the demand to store, load and
visualize the texture data is very ineffective and consume the
computer capability and memory. Texture data compression is
a good way to solve the problem. The author adopts the DXT1
format to compress the texture data.

Compressed with DXT1 format, the texture data is loaded in
high speed and consuming little capability and memory, which
can improve the efficiency of the rendering of massive terrain.

3.3 Dynamic loading and rendering of the massive terrain
data

In the visualization of the massive terrain data, firstly the
terrain nodes which are in the view are determined. Based on
the distance to the view, the terrain nodes are rendered in
appropriate different level and the texture resolution of the
terrain nodes is ascertained. The terrain is rendered based on
the terrain node information.

level 0 level 1 level 2
Figure 4. Pyramid hierarchy levels

In determining which nodes are in the view scene, the view
matrix is computed. From the view matrix, each terrain node
can be estimated by its four corner points. If anyone of its four
points is in the view matrix, the terrain node can be seen in the
view scene.

Figure 6. Determining the terrain nodes in the view scene

After the terrain nodes in the view scene are computed, they are
rendered in different LoD level according to the distance to the
view and their rough error metrics. By optimizing the computer
capability and memory, the terrain nodes are loaded real-time.
When they are leaving the view scene, they are unloaded from
memory, but if they are going into the view scene, they are
loaded dynamically. In this way, the memory to allocate the
terrain nodes are fixed and limited to some proportion so as that
the massive terrain data can be rendered in low performance
capability.

Figure 5. Multi-resolution texture data in DXT1 format
256×256 128×128 64×64 32×32

3.4 Eliminating the terrain cracks in the adjacent terrain
nodes

Under the pyramid hierarchy model, the terrain nodes are
rendered using different LoD level for the different distance
from the node to the view. That is to say the terrain nodes near
to the view are rendered by higher resolution but the terrain
nodes far from the view are rendered by lower resolution. For
the terrain are rendered by different resolution, terrain cracks
between the adjacent nodes would appear.

993

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

Figure 7. Cracks between the adjacent nodes
in the terrain

In eliminating the terrain cracks, there are two methods, adding
triangular or subtracting triangular generally. In this paper,
subtracting triangular is implemented. In the adjacent lines
between nodes of different resolution, the triangular in the
higher resolution nodes will not be rendered. The dashed lines
in figure 8 are the lines that will not be rendered in eliminating
the terrain cracks in this paper.

4 EXPERIMENT RESULTS OF THE ALGORITHM

The authors have implemented our algorithm, achieving frame
rates of 15fps on PⅣ1.60GB computer with 512M RAM and
NVIDIA GeForce2 MX100/200 acceleration under Windows
Visual C++ OpenGL Environment.

In experimental test, the terrain data are over 4GB, including
DEM data and DOM data. Seven-level pyramid hierarchy

model is created. After DXT1 format compression, the DOM
data becomes less than 700MB, with the preprocess time 30
minutes.

In rendering of the terrain data, the average speed is 60 fps,
with the triangular number about 20000, in interactive frame
rates.

5 CONCLUSION AND FUTURE WORKS

The authors present a dynamic rendering algorithm for massive
terrain data. From the experimental test, the algorithm, creating
pyramid hierarchy data model and dynamic rendering of terrain,
can support the massive terrain data.

But now the terrain model is managed in file format on the
basis of single-computer mode, no-supporting the multi-user to
access the data synchronously. So the research on the basis of
database is to be carried out and taken steps for further
research.

REFERENCES

[1] P.Lindstrom,D.Koller,et al. Real-time continuous level of
detail rendering of height field.Computer
Graphics(SIGGRAPH’96 Proceedings) ,P109-118,1996

[2] Duchaineau,M.et al. ROAMing Terrain: Real-Time
Optimally Adapting Meshes. IEEE Visualization
1997,P81-88.Nov.1997

[3] Roettger, Stefan, Wolfgang Heidrich, Philipp Slusallek, and
Hans-Peter Seidel. Real-Time Generation of Continuous Levels
of Detail for Height Fields. In V. Skala, editor, Proc. WSCG
‘98, pages 315–322, 1998

[4] DuYing, A Research on Key Technologies for Global
Multi-resolution Virtual terrain Environment, dissertation for
doctoral degree, Information Engineering University of PLA,
2005

Figure 8. Strategy to eliminate the terrain cracks

994

