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ABSTRACT: 
 
3-Dimensional terrain visualization has been widely used in the fields, such as games, geographic information system (GIS), remote 
sensing (RS) and virtual reality (VR). Rendering large scale 3D terrain interactively is now becoming a hot research topic for the fast 
growing application of 3D terrain visualization. There is a conflict between massive 3D terrain data and its fast rendering. On one 
hand the visualization of terrain scene is expected to be in the interactive frame rates without any delay, on the other hand the terrain 
scene is expected to be large enough to meet the need of understanding the environment without compromising visual quality. From 
the above mentioned, massive 3D terrain data and texture memory management become the performance bottleneck in the 
visualization of large scale terrain. The terrain rendering load must be controlled by reducing the number of rendered primitives using 
LoD(level-of-detail) techniques, adaptive extraction of LoD meshes, pyramid management of DEM(digital elevation model) and 
DOM(digital orthograph model) and real-time loading and rendering of massive 3-D terrain data. In this paper we will investigate and 
discuss the approaches, the pyramid management and rendering of massive 3-D terrain data in interactive frame rates. 
 
 

1 INTRODUCTION 

Interactive visualization of very large scale terrain data leads to 
several efficient problems. In the case of terrain visualization, 
the scene parts which can be seen are only small parts of the 
whole terrain. To improve the rendering performance, the 
terrain should be divided into several parts, according to their 
coordinate in the whole terrain. Through subdivision of the 
whole terrain, not the whole terrain but the visible terrain parts 
in the scene view are loaded into the view scene. 
 
Apart from the subdivision of the whole terrain, the blocks 
which can be seen will not be in the same resolution for the 
different distance to the view point. So in the visualization of 
large scale terrain, scene clipping according to the field of 
view(FOV) and view-dependent simplification can improve the 
terrain rendering velocity and will not lose any rendering image 
quality. 
 
The basic requirements are very important for massive 3-D 
terrain data management and visualization. They are as follows: 
1) easy to manage the regular terrain with massive data 
2) easy to search the appropriate terrain blocks in visualization 
3) easy to load and unload the terrain data 
4) easy to get the appropriate LoD terrain data of the same block 
5) easy to render the massive terrain data in interactive frame 
rates with better precision 
 
To meet the above-mentioned requirements in rendering the 
massive 3-D terrain data, pyramid management and dynamic 
loading of the terrain data is implemented. Using the pyramid 
management of the terrain data, multi-resolution terrain data, 
including DEM and DOM, are created based on the original 
data. On the foundation of the multi-resolution terrain data, 
continuous level-of-detail (CLoD) quadtree have been used to 
efficiently render the massive terrain data. 

The paper is organized as follows. In section 2 we briefly 
review some related work on the large scale terrain rendering. 
Section 3 presents the detailed discussion of pyramid 
management techniques of terrain data and the dynamic loading 
and rendering methods of the terrain data, and section 4 
discusses the programming test. The paper is concluded with a 
summary and outlook in section 5. 
 

2 RELATED WORKS 

In this section, a number of approaches developed over the past 
decades on real-time rendering of the massive terrain data are 
briefly introduced.  
 
Lindstrom et al(1996) proposed the first real-time continuous 
level of detail terrain rendering algorithm. Lindstrom’s 
algorithm is a block based on a bottom-up strategy. It first 
assesses the level of the block according to screen projection 
error metric, and it inserts those vertices which have a larger 
delta value than some threshold. To eliminate cracks between 
adjacent nodes with different levels, Lindstrom suggested 
adjacent blocks share vertices on their boundaries. The 
algorithm can exploit the coherence between frames to reduce 
the number of processed vertices per frame. It generates result 
meshes based on quadtree subdivision and the vertices chosen 
in the previous step. It proves to be an effective way to evaluate 
the importance of vertices in the original sampling grid. 
 
In 1997, Duchaineauy et al can render his terrain with Real-time 
Optimally Adapting Meshes. Since ROAM has been widely 
used in games. ROAM learned much from Lindstrom’s 
algorithm and it’s much faster. ROAM performs triangle 
splitting and merging based on triangle tree structure, which is 
somehow similar to Lindstrom’s binary vertex emphasized on 
bottom-up algorithm, ROAM uses a splitting diamond queue 
and a merging diamond queue to progressively updates in the 
well as other error metrics. The algorithm is error bound, it 
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guarantees the priority to be monotonous while doing a 
top-down subdivision. Besides its strict error control it can 
have an explicit control over triangle numbers and LOS(Line of 
Site). The algorithm exploits more of the coherence between 
frames and can maintain a rather stable frame rates. 
 
The above-mentioned work is an overview of real-time terrain 
rendering algorithms. There are also some other algorithms, for 
example Rottger’s (1998) real-time generation of continuous 
levels of detail for height fields, Hoppe’s(1998) smooth 
view-dependent level-of-detail control to terrain rendering and 
Jonathan’s(2000) terrain rendering at high levels of detail. 
These methods differ more or less from each other, but they 
have something in common, such as view frustum culling and 
LoD method and crack eliminating, in similar way. 
 
 

3 PYRAMID HIERARCHY MODEL 

3.1  Multi-resolution hierarchy model 

Pyramid data model is created based on the pre-process of the 
terrain data and the image data, the strategy is building a 
multi-resolution data model, including the DEM and DOM data. 
The highest level is given level 0, with the smallest resolution 
in the data; the lower the level is, the higher the data resolution 
is. The resolution of data in lowest level is the resolution of the 
original data. 
 

 

 

 

 
Provided that the horizontal range of the terrain is from 
dblMinCol to dblMaxCol and the vertical range of the terrain is 
from dblMinRow to dblMaxRow, the terrain root node number  
is M×N, the node size of the terrain is (2n +1)×(2n +1), 
generally 17×17 or 33×33. There is a common adjacent edge 
between the neighboring terrain nodes. 
 
For texture DOM data, the size of the image data is compulsory 
set to be 2k×2m, generally 256×256 or 512×512. 
 
If the current terrain level is ι,then the terrain resolution at 
levelιin horizontal and vertical can be computed by: 
 

 
 
 

Using the fixed root node, the resolution ratio of the DEM to 
DOM is 1 to 16 or 1 to 32. To affirm the rendering effect, the 
resolution of the horizontal and vertical direction had better 
have a consistent ratio. 
 
The terrain block number is quadruple to that of the next higher 
LoD model, et al. The blocks are encoded with quadtree 
hierarchy code. 
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Figure 2. Leveling and blocking strategy on pyramid hierarchy 
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In data management, Quadtree structure is an effect method. In 
Quadtree structure, the node number in the lower is quadruple 
to the number of the higher level. 

 

Figure 3  Quadtree structure in the management of  
The terrain data 

 

 

 

 
Figure 1. Pyramid Hierarchy Model 

 

 
 
 
 
 
 
 
In figure 4, the quadtree hierarchy levels are demonstrated. 
With the root being level 0, given the grid size dimension n = 
2k+1 and points Pi,j;i,j = 0,1,…n-1, the points on lower levelsι
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located in the center of a quadtree block on levelι- 1(white 
point in Figure 3). 
 
 

 

 

 

 

 

3.2  Multi-level texture compressing techniques 

In rendering the massive terrain data, the amount of DEM data 
is very large, the amount of DOM data is also very large. If the 
original resolution DOM data is used in visualization of the 
massive terrain data, the data would be excessive to the 
computer memory and lead to render the data in slow frame 
rates. And in rendering the terrain with high resolution DOM 
data, it is not suitable for view custom, for the scene with 
different view distance has different view effect. In effect, the 
scene near to view will be seen in detail and that far distant to 
the view is rough. So for texture image data, LoD technique is 
also applicable and useful. 
 
In this paper, the texture data is processed with multi-level 
blocking. First the texture is blocked on the terrain scope and 
its location. Then each block of the texture data is processed 
with multi-level, using the resolution as 256×256,128×
128,64×64,32×32,16×16. The resolution of the texture 
block is depended on its distance to the view, far with lower 
resolution and near with higher resolution. 
 
Even with multi-level texture, the texture data capacity of a 
terrain block is about 256KB. If a scene covers almost 60 
terrain blocks, the texture needing to be dealt with would be 
exceed 15MB. The reality is that the terrain block number will 
be much more than 60, so the demand to store, load and 
visualize the texture data is very ineffective and consume the 
computer capability and memory. Texture data compression is 
a good way to solve the problem. The author adopts the DXT1 
format to compress the texture data. 
 

 

 

 

 

 

 

 
 
 
Compressed with DXT1 format, the texture data is loaded in 
high speed and consuming little capability and memory, which 
can improve the efficiency of the rendering of massive terrain. 
 

3.3  Dynamic loading and rendering of the massive terrain 
data 

In the visualization of the massive terrain data, firstly the 
terrain nodes which are in the view are determined. Based on 
the distance to the view, the terrain nodes are rendered in 
appropriate different level and the texture resolution of the 
terrain nodes is ascertained. The terrain is rendered based on 
the terrain node information. 

level 0 level 1 level 2
Figure 4. Pyramid hierarchy levels 

 
In determining which nodes are in the view scene, the view 
matrix is computed. From the view matrix, each terrain node 
can be estimated by its four corner points. If anyone of its four 
points is in the view matrix, the terrain node can be seen in the 
view scene. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Determining the terrain nodes in the view scene

 
After the terrain nodes in the view scene are computed, they are 
rendered in different LoD level according to the distance to the 
view and their rough error metrics. By optimizing the computer 
capability and memory, the terrain nodes are loaded real-time. 
When they are leaving the view scene, they are unloaded from 
memory, but if they are going into the view scene, they are 
loaded dynamically. In this way, the memory to allocate the 
terrain nodes are fixed and limited to some proportion so as that 
the massive terrain data can be rendered in low performance 
capability. 

Figure 5. Multi-resolution texture data in DXT1 format 
256×256         128×128     64×64  32×32 

 
3.4  Eliminating the terrain cracks in the adjacent terrain 
nodes 

Under the pyramid hierarchy model, the terrain nodes are 
rendered using different LoD level for the different distance 
from the node to the view. That is to say the terrain nodes near 
to the view are rendered by higher resolution but the terrain 
nodes far from the view are rendered by lower resolution. For 
the terrain are rendered by different resolution, terrain cracks 
between the adjacent nodes would appear. 
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Figure 7.  Cracks between the adjacent nodes 
in the terrain 

 
In eliminating the terrain cracks, there are two methods, adding 
triangular or subtracting triangular generally. In this paper, 
subtracting triangular is implemented. In the adjacent lines 
between nodes of different resolution, the triangular in the 
higher resolution nodes will not be rendered. The dashed lines 
in figure 8 are the lines that will not be rendered in eliminating 
the terrain cracks in this paper. 
 

 

 

 

 

 

 

 
4 EXPERIMENT RESULTS OF THE ALGORITHM 

The authors have implemented our algorithm, achieving frame 
rates of 15fps on PⅣ1.60GB computer with 512M RAM and 
NVIDIA GeForce2 MX100/200 acceleration under Windows 
Visual C++ OpenGL Environment. 
 
In experimental test, the terrain data are over 4GB, including 
DEM data and DOM data. Seven-level pyramid hierarchy 

model is created. After DXT1 format compression, the DOM 
data becomes less than 700MB, with the preprocess time 30 
minutes. 
 
In rendering of the terrain data, the average speed is 60 fps, 
with the triangular number about 20000, in interactive frame 
rates. 
 
 

5 CONCLUSION AND FUTURE WORKS 

The authors present a dynamic rendering algorithm for massive 
terrain data. From the experimental test, the algorithm, creating 
pyramid hierarchy data model and dynamic rendering of terrain, 
can support the massive terrain data. 
 
But now the terrain model is managed in file format on the 
basis of single-computer mode, no-supporting the multi-user to 
access the data synchronously. So the research on the basis of 
database is to be carried out and taken steps for further 
research. 
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Figure 8.  Strategy to eliminate the terrain cracks 
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