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ABSTRACT: 
 
The full operational capability of synthetic aperture radar (SAR) interferometry in deformation monitoring has not been achieved yet 
due to the negative influences of spatio-temporal decorrelation and atmospheric delay. With the use of time series of SAR images, 
deformation extraction can be however improved by only tracking some objects with steady radar reflectivity, generally referred to 
as permanent scatterer (PS). This paper presents an attempt to explore a PS-networking approach to isolate deformations from other 
effects such as atmospheric signals and topographic errors. The deforming process in time and space is modelled and estimated with 
a very strong network which is formed by connecting adjacent PSs. The linear deformations and topographic errors are estimated by 
optimizing objective functions and by adjusting the network via weighted least squares (LS) solution. The time series of nonlinear 
deformations and atmospheric signals are computed by singular value decomposition (SVD) and empirical mode decomposition 
(EMD). To validate the algorithm, 39 ERS C-band SAR images acquired over Phoenix in Arizona (USA) from 1992 to 2002 are 
used to detect land subsidence caused by the excessive groundwater withdrawal.   
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Existing studies have shown that there are two major limitations 
in conventional differential SAR interferometry (DInSAR) for 
land deformation monitoring, i.e., spatio-temporal decorrelation 
and atmospheric artifacts (e.g., Zebker & Villaseno, 1992; 
Buckley, 2000; Liu, 2003; Ding et al., 2004). To mitigate such 
drawbacks, many research efforts have been made in recent 
years to explore various techniques for detecting the temporal 
evolution of deformations using time series of SAR images.  
 
A strategy proposed early is to stack the multiple 
interferograms (Sandwell & Price, 1998). Ground deformation 
analysis can be therefore improved by enhancing fringe clarity 
and suppressing atmospheric effects. Afterwards, a very generic 
approach, called permanent scatters (PS) technique, was 
proposed to extract both linear and nonlinear deformations from 
a set of interferograms by isolating atmospheric effects and 
topographic errors (Ferretti et al., 2000, 2001). Since PSs are 
usually some hard objects such as buildings and rocks, they can 
remain temporal coherent radar reflectivity, and thus facilitating 
deformation extraction on the basis of PSs’ phase measurements 
with high signal-to-noise ratio (SNR). Subsequently, another 
effective approach, called small-baseline subset (SBAS) method, 
was developed to further decrease the negative influences due 
to decorrelation noise and bias (Berardino et al. 2002). 
 
PS technique suffers from spatial decorrelation as some long-
spatial baselines may result in by sharing a unique master image 
in forming interferometric combinations, while SBAS technique 
suffers from errors caused by full-resolution phase unwrapping. 
However, the two techniques can complement each other (Mora 
et al. 2003). Combining the merits of PS and SBAS technique, 
this paper presents an improved algorithm to isolate and extract 

deformations, topographic errors and atmospheric signals with a 
very strong network formed by freely connecting neighbouring 
PSs. To maximize coherence of all the SAR dataset, the spatial 
and temporal baseline thresholding are applied when forming 
interferometric combinations. The phase modelling is based on 
the network. The linear deformation velocities and topographic 
errors are first estimated by optimizing an objective function of 
each arc (a connection of two PSs) and adjusting the network by 
LS solution. Time series of phase measurements at each PS is 
then reconstructed by singular value decomposition (SVD) and 
decoupled into nonlinear deformations and atmospheric signals 
by a relatively new signal analysis method - empirical mode 
decomposition (EMD), proposed by Huang et al. (1998). For 
algorithm validation, some experiments have been carried out to 
analyze subsidence evolution in Phoenix metropolitan with 39 
ERS-1/2 C-band (wavelength of 5.6 cm) SAR images acquired 
1992 through 2000. 
 
 

2. DATA PREPROCESSING AND PS NETWORKING 

2.1 Data Preprocessing 

Suppose that deformation analysis is based on N+1 SAR images 
acquired at the ordered times ( ) over the same area. 
An interferometric combination is acceptable if and only if its 
temporal baseline is below a given threshold (e.g., 4 years) and 
its spatial baseline is also below a given threshold (e.g., 120 m 
for ERS SAR). Let us assume that M interferograms may be 
formed in this way. Prior to further analysis, several procedures 
are necessarily performed to compute differential 
interferograms.  

Nttt  , , , 10 Λ

 
Since co-registering SAR imagery is a key prerequisite for any 
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change detection, all the SAR images have to be co-registered 
into the space of the selected reference image by maximizing 
correlation between SAR acquisitions. As the subsequent PS 
detection is based on statistical calculation of SAR data, all the 
SAR amplitude images are calibrated in a similar way as Lyons 
& Sandwell (2003). The unique radiometric calibration factor of 
each image is defined and calculated as a ratio of the amplitude 
of each image (mean of all pixels) to the mean amplitude of the 
entire dataset. Each SAR amplitude image is divided by this 
ratio to make comparable brightness between images. 
 
Each initial interferogram is derived by a pixel-wise conjugate 
multiplication (equivalent to phase differencing) between the 
master SAR image and the co-registered slave SAR image. In 
theory, such direct phase difference at each pixel is due to 
several contributions, i.e., flat-earth trend, topography, ground 
motion, atmospheric delay and decorrelation noise. To highlight 
ground deformation, both the precise orbital data and the 
external digital elevation model (DEM) are utilized to remove 
flat-earth trend and topographic effects from each initial 
interferogram, thus resulting in M differential interferograms. It 
should be emphasized here that no any filtering is performed 
during differential processing to maintain independency in 
phase data. 
 
Let us assume that the available DEM has errors and the ground 
motion in radar line-of-sight (LOS) direction is of linear and 
nonlinear accumulation in time. The differential interferometric 
phase at a pixel from the ith interferogram can be modelled as,     
 
 

       )(4
sin

4)( i
res
iiiii TvTB

R
T φ

λ
πε

θλ
π

+⋅⋅+⋅⋅
⋅⋅

=Φ ⊥         (1) 

 
 
where = spatial (perpendicular) baseline ⊥

iB

iT = temporal baseline (time interval)  
λ = radar wavelength (5.66 cm for ERS) 
R = sensor-target distance 
θ = radar incident angle 
ε = elevation error 
v = linear LOS deformation velocity 

res
iφ = residual phase 

 
2.2 PS Networking 

As PSs will be used to form an observation network similar to a 
levelling or GPS network, they need to be picked out from the 
decorrelated pixels or areas. Using time series of the calibrated 
SAR amplitude data, we basically follow the strategy by 
Ferretti et al. (2001) to identify PS candidates on a pixel-by-
pixel basis. Any pixel with amplitude dispersion index (ADI) 
less than 0.25 is determined as a PS candidate.   
 
After selection of all the PSs, we connect the neighbouring PSs 
to form a network. It will be seen that such network can provide 
a good framework for data modelling and parameter estimating 
by LS method. Unlike a triangular irregular network (TIN) as 
applied by Mora et al. (2003), we freely link the adjacent PSs 
using a given threshold of Euclidian distance. Any two PSs are 
connected only if their distance is less than a give threshold 
(e.g., 1 km). The PS network formed in this way is hereafter 
referred to as freely-connected network (FCN). 
 

It should be pointed out that any regionalized variable follows a 
fundamental geographic principal; that is the samples that are 
spatially closer together tend to be more alike than those that 
are farther apart. The concept of neighbourhood differencing is 
hence often employed to compensate some spatially correlated 
errors or offsets. Differential GPS is a good example. Likewise, 
our FCN strategy benefits deformation analysis via differencing 
operation along each connection (arc) of two PSs in the FCN as 
some spatially-correlated errors such as atmospheric effects and 
other biases may be cancelled out more or less.  
 
 

3. MODELLING AND ESTIMATING 

3.1 Modelling and estimating with PS Network 

As discussed in section 2.2, our data modelling is based on the 
idea of neighbourhood differencing along each arc of the FCN. 
For the ith interferometric pair, the differential interferometric 
phase increment between two adjacent PSs of each arc can be 
derived from equation (1) and expressed as,  
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where 
⊥
iB = mean of perpendicular baselines at two PSs 

           R = mean of sensor-target distances 
           θ = mean of radar incident angles 
           εΔ = increment of elevation errors 
           vΔ = increment of linear LOS deformation velocities 
           = increment of residual phases res

iφΔ

The increment of residual phases  can be viewed as a sum 
of several components, i.e., nonlinear-motion phase increment 

, atmospheric phase increment  and decorrelation-

noise phase increment .  
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The investigation by Ferretti et al. (2000, 2001) indicated that if 

 is small enough, say res
iφΔ πφ <Δ res

i , both εΔ  and vΔ  can 

be indeed derived directly from the M wrapped differential 
interferograms. In fact, the solution of εΔ  and vΔ  can be 
obtained by maximizing the following objective function. 
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where γ = arc’s model coherence (MC) 

1−=j  
res
iφΔ = difference between measurement and fitted value  

 
Although the above objective function is highly nonlinear and 
the phase dataset is measured in a wrapped version, the two 
unknowns εΔ  and vΔ  can be determined by searching a pre-
defined solution space to maximize the MC value. It should be 
noted that the phase unwrapping can be avoided through the 
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process of function optimization, which is a really tough task in 
data processing of the conventional DInSAR. 
 
3.2 Parameter Adjustment by LS Solution 

With equation (3) we can compute the increments of elevation 
errors and linear deformation velocities along all the arcs in the 
network. By trials with simulated data, we have found that the 
arcs have an accurate solution for εΔ  and  if vΔ γ  is larger 
than 0.45. The network can then be treated in a similar way as a 
leveling or GPS network; a weighted LS adjustment is applied 
to eliminate geometric inconsistency due to uncertainty in phase 
data, and thus obtaining the most probable values of the linear 
deformation velocities and elevation errors at PSs. 
 
Taking the adjustment of LOS linear deformation velocities as 
an example, we present here some basic ideas for computation. 
A prototype observation equation for an arc is expressed as 
 
 

Klplprvvv plpllp  , ,2 ,1, ,      ,ˆˆ Κ=∀≠+Δ=−         (4) 
 
 

where = linear deformation velocity at PS p pv̂

lv̂ = linear deformation velocity at PS l 
K= total number of all the PSs 

 
Suppose there are Q arcs available in the network, we will have 
Q observation equations. The MC value of each arc can be used 
as a weight. With a weighted LS solution, the motion velocities 
at all the K PS can be eventually obtained. Such procedure can 
also be applied in a similar way onto the elevation-
inconsistency network to estimate the elevation errors at all the 
K PSs. The Kriging interpolator can be applied to generate the 
deformation-velocity map and the elevation-error map.  
 
As a remark, we underline that a reference point without motion 
or elevation error should be selected according to a priori 
information to obtain a unique solution with LS adjustment, and 
thus making all the estimates be related to the benchmark. In 
addition, we solved the large sparse matrix system using the 
software package termed UMFPACK (Davis, 2002). Moreover, 
it should be noted that the FCN used here is much stronger in 
terms of reliability than the TIN. Our simulation study shows 
that the LS solution derived with the FCN is much more 
accurate than that derived with the TIN even though a small 
portion of measurements ( εΔ , vΔ ) are intentionally set as 
outliers. This is because the redundancy number in the FCN is 
significantly larger than that in the TIN.  
 
3.3 Separation of Nonlinear Deformation and Atmospheric   
Effect 

The further analysis focuses on isolating nonlinear motion from 
atmospheric delay. For each interferometric pair, the residual 
phase increment (gradient) at each arc can be first derived. The 
integration of gradients (i.e., phase unwrapping) of all the arcs 
in the network is then performed by a weighted least squares 
method (Ghiglia & Pritt, 1998), and thus obtaining the residual 
phases in absolute sense at all the PS pixels for each pair. As 
mentioned before, the residual phase is contributed by nonlinear 
deformation, atmospheric delay and decorrelation noise.  
 
It is possible to separate nonlinear motion from atmospheric 

delay because the two terms have different spectral structure in 
space and time domain (Ferretti et al., 2000; Mora et al., 2003). 
In terms of atmospheric perturbation, a high correlation exhibits 
in space, but a significantly low correlation presents in time. In 
terms of nonlinear deformation, a strong correlation exists in 
space and a high correlation occurs in time. It is however not 
easy to discriminate the spectral bands between the nonlinear 
deformation and the atmospheric effect without availability of a 
priori information. Although an exact separation of the two 
terms is a challenged task, we try to achieve such purpose by 
introducing a strategy referred to as empirical mode 
decomposition (EMD) which was pioneered by Huang et al. 
(1998). This method is in principle different from the cascade 
filter applied by the previous studies (Ferretti et al., 2000, 2001; 
Mora et al., 2003).  
 
To decouple signatures at each PS, we first estimate the time 
series of unwrapped residual phases corresponding to all the 
SAR acquisition times. This can be done using a singular value 
decomposition (SVD) method (for details, see Berardino et al., 
2002). The separation between atmospheric delay and nonlinear 
motion is then conducted by EMD using the time series of 
unwrapped residual phases.  
 
The dataset being dealt with generally has several features: (a) 
the tens of samples are irregular; (b) the data is non-stationary 
(varying undulation); and (c) the data represents a nonlinear 
process. Theoretical study by Huang et al. (1998) indicated that 
the EMD approach is more advantageous for dealing with a 
nonlinear and nonstationary process than other signal analysis 
tools like Fourier transform. The EMD method separates the 
signal into a collection of intrinsic mode functions (IMF) that 
are useful for revealing some physical properties. For details of 
EMD operation, see Huang et al., 1998. 
 
By trials with real data, we can generally extract four IMFs 
from the time series of unwrapped residual phases. The IMFs 
with high frequencies correspond to atmospheric component, 
while the IMFs with low frequencies reflect nonlinear motion. 
It is not so direct to thoroughly discriminate them in the case of 
no a priori information available. However, reasonable results 
have been produced in our case when we consider the sum of 
the first and second level of IMFs as the atmospheric phases 
and treat the sum of the third and fourth level of IMFs as the 
nonlinear motions. The obtained two time series of phases for 
nonlinear motion and atmospheric delay at each PS are 
expressed as  
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inally, the total LOS deformation at any PS can be computed 
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by summing the linear and nonlinear components, which can be 
written as a function of SAR acquisition time ti by 
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4. DATSETS AND TESTING RESULTS 

The western part of Phoenix (in Arizona, USA) consists of Deer 

 2000). We attempt to detect the spatio-temporal subsidence 
distribution in Phoenix by the method presented in section 2 
and 3. For this study, we use 39 ERS SAR images acquired 
from 1992 to 2000, which are combined to form 86 
interferometric pairs by thresholding of spatial and temporal 
baseline shorter than 120 m and 4 years, respectively. Table 1 
lists the information of all the interferometric pairs. Figure 1 
shows the study site and all the PSs superimposed onto the SAR 
amplitude image averaged from all the datasets. 

Valley and the west Salt River Valley (Buckley, 2000), where 
several towns are included, i.e., Glendale, Peoria and Sun City. 
The excessive pumpage of groundwater in the areas has resulted 
in a large extent of land subsidence. The early interferometric 
study with a limited set of ERS C-band SAR images reported 
that several subsiding bowls exhibit across the towns (Buckley,  

Master/Slave ⊥

 
B  
(m) 

T  Master/Slave 
Dates, YMD 

⊥B  
(m) 

T  
(days)

Master/Slave 
Dates, YMD 

⊥B  
(m) 

T  
Dates, YMDa (days) (days) 

920710/930521 9  9  24 315 50827/960916 104 386 61230/970519 -35 140 
920710/931008 -78 455 950827/980330 52 946 961230/981130 -86 700 
920710/950827 -85 1143 950827/981130 88 1191 961230/990802 -65 945 
920814/930205 -25 175 950827/990802 109 1436 961230/991220 -21 1085 
920814/950514 80 1003 951105/951210 -68 35 961230/001030 54 1400 
920814/960603 36 1389 951105/961021 106 351 970310/970519 -91 70 
920918/951106 -79 1144 951106/951211 -51 35 970310/990315 73 735 
920918/951210 64 1178 951106/980504 16 910 970310/991220 -76 1015 
921023/960812 113 1389 951106/990628 -65 1330 970310/001030 -2 1330 
930205/950514 105 828 951211/980504 67 875 970519/980330 -88 315 
930205/960603 60 1214 951211/990628 -15 1295 970519/981130 -51 560 
930521/931008 -101 140 960218/960219 53 1 970519/990802 -31 805 
930521/950827 -109 828 960218/961021 -35 246 970519/991220 14 945 
930521/960916 -5 1214 960218/980608 -5 841 970519/001030 89 1260 
930521/961230 65 1319 960219/960428 87 69 980223/980713 90 140 
930521/970519 31 1459 960219/961021 -88 245 980330/981130 37 245 
930903/961230 -98 1214 960219/980608 -58 840 980330/990802 57 490 
930903/970310 -42 1284 960603/980223 31 630 980330/991220 103 630 
931008/950827 -8 688 960812/971215 -112 490 980504/990628 -81 420 
931008/960812 -41 1039 960812/980330 85 595 980608/000508 13 700 
931008/960916 97 1074 960916/961230 70 105 981130/990802 21 245 
931217/960218 -73 793 960916/970519 36 245 981130/991220 65 385 
931217/960219 -19 794 960916/980330 -52 560 990315/990524 50 70 
931217/960428 68 863 960916/981130 -16 805 990315/001030 -75 595 
931217/961021 -107 1039 960916/990802 5 1050 990524/990628 110 35 
950514/960603 -44 386 960916/991220 50 1190 990802/991220 46 140 
950514/980223 -13 1016 961021/980608 29 595 990802/001030 119 455 
950514/980713 76 1156 961021/000508 42 1295 991220/001030 75 315 
950827/960812 -33 351 961230/970310 56 70    

aYMD , mo ay; Read 920710 as July 1 992, and 001030 as October 30, 2000.

Table 1. Summary information for 86 short baseline interferometric pairs 

 

: year nth, d 0, 1   
 

Sun City

Glendale 

Peoria 

 

Figure 1. The study site and PS pixels superimposed onto the SAR amplitude image averaged from all the datasets. 
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P1 

P2 

 
Figure 2. The subsidence-velocity map of the study area. P1 and P2 are marked as two PS points analyzed in Figure 4. 

 

(a) (b)

 
Figure 3. Comparison between simulated (a) and observed (b) differential interferograms with time interval of about 4 years. 

 
The further data reduction concentrates on a patch of 27 km by 
15 km within the ERS SAR frame as shown in Figure 1. The 
14618 PS pixels detected out by ADI are superimposed onto the 
amplitude image by red points. 86 differential interferograms 
are generated by the “two-pass” method. The DEOS precise 
orbit state vectors and the SRTM DEM (about 10-m accuracy) 
are used to remove both flat-earth trend and topographic effect, 
thus highlighting land subsidence. 
 
A very strong network was created by freely connecting each 
PS and all the others less than 1 km apart, resulting in 1463306 
arcs. The increments of both linear motion velocities and 
elevation errors at each arc were then estimated by maximizing 
the model coherence with equation (3). The LOS deformation 
velocities and elevation errors at all the PSs are estimated by 
the weighted LS solution. Figure 2 reports the derived 
subsidence-velocity map in the study area. It can be seen that a 
subsiding bowl with a diameter of about 5 km appears in 
Glendale and has a peak subsidence rate of 54 mm/yr, while a 
wider subsiding bowl with a diameter of about 12 km spans 
Glendale, Peoria and Sun City and has a peak subsidence rate of 
30 mm/yr. It can be inferred that the linear subsidence 
magnitude accumulated during the maximum time span of SAR 
acquisitions (about 8 years) may be up to 43 and 24 cm, 
respectively, at the two peaks. The eastern parts of the study 
site present subtle or zero subsidence. The subsidence in 
farmlands cannot be estimated due to the lack of PSs.  
 
The fidelity of the estimated subsidence rates has been checked 
by visually comparing the observed differential interferograms 

with those simulated using the subsidence-velocity map. As an 
example, Figure 3 shows such comparison for the differential 
interferograms with time interval of about 4 years. It is evident 
that they are in good agreement. Some minor inconsistency in 
some areas can be ascribed to atmospheric artifacts, topographic 
errors, and nonlinear motion. It also can be seen that the small-
extent but deeper subsiding bowl in Glendale can be completely 
recovered by the PS networking method. However, its complete 
shape and extent do not present in any observed individual 
differential interferograms due to temporal decorrelation. All 
these not only verify that the estimation approach is powerful 
and reliable, but also suggest that the linear subsidence in the 
study area dominates the nonlinear component. 
 
The nonlinear subsidence was separated from the atmospheric 
artifacts by both the SVD and EMD method. As examples, 
Figure 3 shows the temporal evolution of atmospheric delay in 
LOS direction, nonlinear and total subsidence at two PS points 
(P1 and P2) near the centres of two subsiding bowls (see Figure 
2). The atmospheric variation is evidently random in time. The 
atmospheric artifacts at P2 range from -2.0 to 2.1 cm, which are 
slightly higher than those at P1. Point P2 presents a dynamic 
range of -2.5–2.2 cm nonlinear subsidence, while point P1 has a 
narrower range of nonlinear subsidence (-2.0–1.4 cm). 
Additionally, it can be seen that point P1 located near the 
deeper subsiding bowl exhibits more seasonal undulation than 
point P2 located near the shallow subsiding bowl. From the two 
profiles of total subsidence, we stress once again that the linear 
trend of subsidence dominates the nonlinear component in this 
study area. 
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(a)                                                                                         (b) 

Figure 4. Temporal variation of atmospheric (ATM) delay in LOS direction, nonlinear subsidence (NLS) and total subsidence (TS) 
at two PS points as marked in Figure 2. (a): for P1 and (b) for P2. 

 
 

5. CONCLUSIONS 

Combining merits of both PS and SBAS technique, this paper 
presents a PS-networking approach to map ground deformation 
with time series of SAR images. Data modelling and parameter 
(e.g., deformation velocity) estimating by function optimization 
and LS solution rely on the freely-connected network that may 
mitigate the negative impacts of both decorrelation noise and 
atmospheric delay. In terms of reliability, such FCN is more 
advantageous than the TIN applied elsewhere. Both SVD and 
EMD tool can be successively employed to reasonably isolate 
nonlinear deformation from atmospheric delay. For algorithm 
validation, some experiments have been performed to analyze 
historical evolution of subsidence in Phoenix with 39 ERS SAR 
images. The testing results show that such PS-networking 
approach is viable and efficient for detecting of the temporal 
behaviour of ground deformations. 
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