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ABSTRACT 

A hybrid neural network/expert system has been developed to 
~a'P land cc:>ver such as forest soil or vegetation overstorey from 
dlg11:~ spatial data (that ~ay include remotely sensed imagery, 
elevatIOn data, and terram features derived from the elevation 
data). The method is different because the hybrid system 
exhibits the inherent advantages of both neural network and 
expert system models. Firstly, the hybrid system may acquire 
(or lea.rJ?) geograp~ic and forest management knowledge from 
~he spat~al data, usmg homo~eneous training areas. Secondly, it 
IS possIble to record and mterrogate "experience" using a 
knowledge base linked to the neural network, and to use the 
knowledge to assist in the classification of land cover. The 
expert system and neural network components of the hybrid 
system operate as a fully integrated system; in other words the 
expert system does not simply process the output of the n~ural 
network. 

Key words: Artificial Intelligence, Expert Systems, Neural 
Networks, Renewable Resources, Classification 

INTRODUCTION 

E~pert systems have been devised to perform various functions 
WIth ~espe~t to digital spatial ~ata including predicting fire 
beha':'IOur m the No!them Temtory of Australia (Davis and 
Nanmnga, 1985; DaVIS et al., 1986); the identification of objects 
from remotely sensed digital data (such as training areas 
[Goodenough ~t al., 1987]); interpreting airports from (digital) 
maps and aenal photographs (McKeown, 1987); planning 
he~ICopter routes (Garvey, 1987); updating forestry maps by 
usmg remote!y sensed data for change detection (Goldberg et 
al., 1985); d~spatch of fore~t fire control resources (Kourtz, 
1987); selectIOn and schedulmg of cultural practices in forests 
(,Ral!scher and Cooney, 19~7~; and aiding forest managers by 
hnking rules about aspen SllVIculture and management (White 
and Morse, 1987). Gray and Stokoe (1988) and Robinson and 
Frank (1987) provide summaries of other expert systems that 
have been applied to environmental assessment and management 
probl~ms. F~rsyth (1984) discussed general concepts in 
Bayeslan (statistical) updating of probabilities. Lee et al. (1987) 
combined the two visible landsat MSS bands with the two MSS 
infrared bands using Bayesian updating. They obtained similar 
results by using evidential calculus (Shafer, 1979). Expert 
systems have been developed to integrate knowledge with 
remotely sensed and digital terrain model data and have been 
shown to improve mapping accuracy compa'red with using 
remotely sensed data alone (Skidmore, 1989a). 

1015 

There !ll"e a nU!llber of p~oblems with using expert systems for 
analysmg spatIal data. FIrstly, expert systems have limitations 
when learning knowledge (ie. inducing rules) (Forsyth 1989 
page 197-221). In addition, the rules may be correlat~d and 
~herefor~ contr~vene t~e assumption of independence in the 
~nferencmg engme (Skid~ore, 1989a). If rules are missing or 
mcorrect, or the set of mdependent variables (eg. GIS data 
layers) are incomplete, derived maps and images may be 
erroneous (Skidmore, 1989a). 

An alternative method is neural networking. Limited work has 
been undertaken in applying this technology to spatial data. 
Hepner et al. (1999) claimed promising results by using a 
neural network to tram remotely sensed data, and then inverting 
the model to classify unknown image pixels. 

Critics of neural networks have identified problems with the 
technology. Neural networks do not use structured 
repr~s~ntati0!1s of. knowledge. In other words, there is no 
explIcIt consIderation of formal semantics and logic in the 
network model (Davis, 1980). In contrast to expert systems the 
knowledge is not incorporated into the networks as r~les. 
Another criticism of the neural network approach is that 
constants are often used to weight connections, with some 
researchers asserting that these constants represent 'fudge 
factors' (Pinker and Prince, 1988). 

Forsy.th (198?) states that ' ... connectionist (neural networks) 
tec~mques w~ll prove. to be better for some t~sks (perception) 
whlle symbohst techmques (expert systems) WIll prove superior 
for o~er tasks (mos~y intellectual)'. In this study, these two, as 
yet ~lsparate, techmques have been combined into a single 
hybnd system for the analysis of digital spatial data and the 
storag~ of knowledg~. The propose~ method is examined using 
the solliandscape umt data set, obtained from an area of native 
eucalypt forest in south east Australia (Skidmore et a/., 1991). 

MEIHODS 

Database construction 

Certain. data sets are readily available over forested regions of 
AustralIa. For example, forest overstorey vegetation types may 
be classified from remotely sensed data (Skidmore and Turner 
198.8), while terrain parameters such as gradient, topographi~ 
poSItIon and aspect may be derived from digital elevation models 
(DBMs) (Skidmore, 1989b and 1990). A raster data base 
comprising soil wetness, gradient and vegetation overstorey may 
be generate~ from these sources. In turn, these data sets may be 
used to predict the occurrence of forest resource parameters' in 
this case forest soil landscape units. ' 



Two main sources of information exist for predicting the 
occurrence of forest soils. One is prior expert knowledge of the 
occurrence of the forest soils, as used by Skidmore et al. 
(1991). For example, it is known that the Residual Crest (RC) 
soil landscape unit occurs on dry ridges. A second source of 
information are "training areas"; in other words, homogeneous 
areas of soil may be identified in the field or on aerial 
photographs. (Note that when delineating training areas, an 
analyst will usually have no understanding of the underlying 
ecological relationships between the class being mapped and 
environmental parameters such as aspect or gradient). In this 
study, both sources of knowledge are used to assist in 
classifying the correct soil landscape units. 

Outline of method 

In the first phase of the classification process, a neural network 
is constructed to classify the forest soil landscape units, based 
on training area data available to the analyst. In this phase, the 
classification process "learns" about the ecological position of 
forest soils, based on the training areas supplied by the analyst. 
Any unknown grid cells are then classified by the neural 
network. If there is an unambiguous solution (ie. only one soil 
landscape unit may represent the cell), then the process steps to 
the next cell to be classified. However, if more than one soil 
landscape unit exists at the grid cell, then the algorithm turns to 
the knowledge base created from the knowledge of human 
expert(s). 

A convenient method for formally storing expert knowledge is in 
a prior probability table (eg. Skidmore et al., 1991). The 
proposed algorithm uses a modified neural network learning 
rule, based on the Widrow-Hoff rule or delta rule (Sutton and 
Barto, 1981; Rumelhart and McClelland, 1986), to access the 
knowledge base. The learning rule is used to decide which of the 
possible soil landscape units, identified during the previous 
processing stage, should best represent the cell. 

Detailed methodology 

The neural network is based on a modified delta rule (also 
known as the Widrow-Hoff rule) (Sutton and Barto, 1981). In 
this implementation of the delta rule, homogeneous areas are 

Fires 

GD 

Fires 

6-20 
Fires 

J:~ from \ neion 1 Exceed thrthold? 
GIS and remotely 
sensed data input neuron connections: 

weights from modified 
prior probability table 

Figure 1: Diagram showing the structure of the hybrid model 
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delineated by the analyst and provide training area data that link 
the environmental attributes in the raster GIS, to the soil 
landscape units. For example, a typical grid cell is shown in 
Figure 1. There are two environmental attributes which describe 
this cell viz. GD (ie. a Gully which is Dry) and 6-20 (ie. 
gradient is between 6° and 20°). (Note that another grid cell may 
have different attributes). Assume that the grid cell may be 
described as one of the following soil landscape unit classes viz. 
RC (ie. Residual Crest), DSI (ie. Degrading Slope 1) or ASI 
(ie. Aggrading Slope 1). 

There are four possible conditions for the cell attributes viz. 
'GD' and '6-20' both occur, 'GD' occurs, '6-20' occurs, or 
neither attribute occurs. Let '1' represent that an attribute occurs 
over the cell, whilst '0' represents that an attribute does not 
occur. If the training area information indicates that a soil class 
(eg. RC) exists when GD and 6-20 occur over the cell, then 
indicate that a 'neuron' will fire. This is stated formally in Table 
1. 

Table 1: Cell attribute conditions that cause a neuron to fire. 
thereby indicating that soil class RC exists. 

GD 
6-20 
Fires? 

1 
o 
1 

o 
1 
1 

o 
o 
o 

Now, assume that the neuron fires only if a threshold 'T' is 
exceeded. For example, the 'GD' and '6-20' attributes occur 
together as in column 1 of Table 1, and cause the neuron to fire 
because the threshold 'T' is exceeded. Also assume that the 
attributes 'GD' and '6-20' which connect to the neuron have 
some weight Wi. For example, if the threshold T = 0.6, then the 
combined weight of the GD and 6-20 attributes must be greater 
than 0.6, in order for the neuron to fIre. It therefore follows that 
Table 1 may be re-expressed as a series of inequalities, as 
shown below in Table 2. 

Table 2: Series of inequalities expressing whether the neuron 
will fIre. based on the weight of the attributes connected to the 
neuron 

WI + W2 >T 
WI >T 
W2 >T 
o >T 

From the inequalities, it can be seen that T is negative. It can 
also be seen that if WI and W2 are negative, then T will 
correlate with WI and W2. In other words, as WI or W2 
becomes smaller, the value of T will also decrease. Stated 
formally, 

Let WI and W2 < O. 
Note that T < O. 
Therefore, as WI ---> -1, T < WI; 
as W2 ---> -1, T < W2; 
as WI + W2 ---> -1, T < WI + W2. 
Therefore as WI, W2 ---> -1; 
T---> < WI, W2 

To ensure that this relationship is true, the weights WI and W2 
should be expressed in a negative range; that is, WI and W2 
should range between -1 and O. The initial weights for 'GD' and 
'6-20' may be derived from a modification of the expert 
knowledge prior probability table, as developed by Skidmore 
(1989a). 

The prior probability table contains the probability that a soil 
landscape unit occurs, given an environmental condition. For 
example, the probability that the Residual Crest soil landscape 
unit occurs on a dry gully is 0.3. It is easy to re-express this 
probability value to range between -1 and 0, ie. -1 + 0.3 yields 
-0.7. All initial weights provided by the expert system prior 
probability table are similarly re-expressed to range between -1 
andO. 



For each of the three soil types being considered here (ie. RC, 
OS 1 and AS 1), the delta rule is used to train a neuron, and a 
threshold T is calculated. The algorithm used follows the 
Widrow-Hoff rule, as outlined by Sutton and Barto (1981). 
Firstly, the reinforcement signal is calculated, which is the signal 
that determines the change in the connection weights between 
neurones: 

ri(t) = [z(t) - yet)] xi(t) 

where z(t) is a specialised signal which is used to converge the 
weights towards the desired solution, and xi(t) is the stimulus 
pattern of synapse i at time t, for i = 1, ... ,n synapses. Note that 
yet) = I{wiCt)xiCt)}, summed over i = 1, ... ,n synapses. A 
synaptic weight increases or decreases in proportion to the 
reinforcement signal riCt): 

wiCt + 1) = wi(t) + cri(t), 

where c = positive learning rate constant, and wi(t) = weight of 
synapse i at time t. It is this weight which determines whether a 
neuron frres 

The most likely soil type to represent a cell is determined by the 
neuron with the highest threshold. In other words, the neuron 
with the highest T, which frres in response to the input GIS data 
cell, is chosen to represent the cell. 

It is possible to deduce from the first column of Table (1) that 
the following sentence is true: 

RC occurs on GO and RC occurs on 6-20 

The 'rule of elimination' in formal logic (Graham, 1989, page 
63) allows us to infer that both of the following sentences are 
also true: 

RC occurs on GO 
RC occurs on 6-20 

Thus, where only one of the cell attributes (such as GO) are 
present in Table 1, RC will also occur (that is the neuron will 
frre). The rule of modus tollens allows us to conclude that if GO 
and 6-20 do not occur, RC is not present (Graham, 1989, page 
64). In this case the neuron will not frre, as shown in column 4 
of Table 1. 

EXAMPLE 

A simple worked example follows. Assume there are three 
layers in a GIS comprising remotely sensed data, gradient and 
combined topographic position-soil wetness. In addition, it is 
assumed that there are three soil landscape units to be classified 
by the hybrid neural network-expert system viz. residual crest, 
degrading soil and aggrading soil. If each neuron calculates the 
threshold for a soil-landscape unit, then there will be three 
neurones (one for each soil-landscape unit), with each neuron 
having 23 (ie. 8) possible combinations of GIS layer values. 

A typical neuron being trained from a homogeneous field 
training area is shown in Figure 1 for two attributes. In this 
example, three attributes connect to the neuron from the GIS 
grid cell viz. DG (dry gully), 6-20 (gradient of 6-20 degrees) 
and STA (ie. the remotely sensed data is classified to vegetation 
type silvertop ash). The eight possible combinations of cell 
attributes are shown in Table 3. Associated with the attributes is 
information about whether the neuron frres (or does not frre) for 
the RC, OS 1 and AS 1 soil types. This information is obtained 
from the training areas. For example, consider the frrst column 
in Table 3a below. A cell may occur over a dry gully, with a 
gradient of less than 6 degrees, and an overstorey of ST A. 
Using training area information, it is known that the cell contains 
the RC soil type. Thus the column indicates that where GO, 6-
20 and STA are present (indicated by a '1 I), RC is also known 
to occur, and therefore the neuron will fire (also indicated by a 
'I'). The above argument holds for OSI and ASI soil types (see 
Tables (3b) ad (3c». 
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Table 3(a): Cell attributes causing the neuron to ftre. thereby 
indicating soil class RC exists. 

GO 
6-20 
STA 
Fires? 

1 
1 
1 
1 

RC 

1 
1 
o 
1 

1 0 
o 1 
o 1 
1 1 

001 
010 
101 
111 

o 
o 
o 
o 

Table 3(b): Cell attributes causing the neuron to fITe. thereby 
indicating soil class OS 1 exists. .-

GO 
6-20 
STA 
Fires? 

1 
1 
1 
1 

OSI 

110 
101 
001 
1 1 1 

o 0 1 0 
o 100 
1 0 1 0 
1 1 1 0 

Table 3(c): Cell attributes causing the neuron to fITe. thereby 
indicating soil class AS 1 exists. 

GD 
6-20 
STA 
Fires? 

ASI 

1 
1 
o 
I 

1 0 
o 1 
o 1 
1 1 

o 0 
o 1 
1 0 
1 1 

1 
o 
1 
1 

o 
o 
o 
o 

As explained above, a set of inequalities may be generated to 
describe the behaviour of each neuron. Thus for RC, the set of 
inequalities are: 

WI + W2+ W3 > T 
WI + W2 > T 
WI > T 

W2+ W3 > T 
W3 > T 

W2 > T 
WI + W3 > T 

0 > T 

The weights to be applied to each neuron synapse are obtained 
from the expert system probability matrix (Skidmore et ai., 
1991), which are then re-expressed into the range -1 ---> 0 
(Table 4). 

Table 4: Prior probability of an environmental variable occurring 
given a soil landscape unit. 

Environmental 
variable 
STA 
6-20 
GO 

Soil Landscape Unit 
RC OSI ASI 
-0.5 -0.5 -0.3 
-0.7 -0.4 -0.5 
-0.7 -0.5 -0.4 

These values were input to neurones of a neural network and the 
following results obtained: 

Table 4: Threshold values for each soil landscape unit 

Soillandsca unit 
RC 
OSl 
ASI 

Threshold 
-1.47 
-0.94 
-0.76 



The highest threshold vaiue becomes the cover class which 
represents the cell; in this case soil landscape unit AS 1. An 
alternative approach to decide the cover type to represent the cell, 
is to sum the threshold outputs listed in Table 4, and to 
distinguish between the cover types based on a majority 
function, using the concept of the perceptron (Rubel and Wiesel, 
1962). 

If only one cover type exists over the particular combination of 
cell attributes being considered, then there is no need to test for 
the most likely cover type using the neural network. 

DISCUSSION 

The hybrid neural network/expert system has advantages 
inherited from both models. Firstly, it is possible to input 
training areas to the hybrid system via the neural network 
component. The training areas are relatively homogeneous 
regions representative of a land cover type (such as a soil 
landscape unit). The neural network uses this information to 
automatically associate cover types with particular combinations 
of cell attributes. This process is equivalent to an aerial 
photograph interpreter learning features on an aerial photograph 
by association with known ground cover types. 

The second advantage of the hybrid approach is an ability to 
formalise prior knowledge about the cover types, and to 
incorporate this knowledge into the classification process. In 
other words, an analyst may know that a particular soil 
landscape unit has a high possibility of occurring on a specific 
environmental position (eg. RC occurs on dry ridges). This a 
priori knowledge may be 'hardwired' into the probability matrix, 
and used to decide the most likely class to represent the cell. 

In this paper, a simple soil landscape mapping exercise has been 
cited, using three cell attributes. Clearly it would be possible to 
generalise the hybrid system, by using many cell attributes and 
mapping many classes. 
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