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ABSTRACT 

Results of a study using digital analysis applied to Airborne Thematic Mapper (ATM) data are 
described. An approach seeking improvements in multispectral agricultural land cover 
classification is used with particular attention given to the specific characteristics of early 
season crop data. In order to achieve data volume reduction a method for subset band selection 
is used along with different sampling schemes for area estimations through the estimations of 
the proportions of agricultural land cover classes. Results show improvements in classification 
accuracy of the optimum subset of bands and data volume reduction was achieved by feature 
selection and by the use of sampling techniques. Low errors were obtained in area estimations 
using systematic sampling strategy. 
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1. INTRODUCTION 

High spatial ground resolution and high spectral 
resolution remotely sensed data is often required 
to produce the desired information for agricultural 
app 1 i cat ions. High reso 1 ut i on data sets togethe r 
with multitemporal data sets resulted in an 
associated increase in data volume. In the field of 
crop inventory activities, this presents a data 
handling problem (Hallum and Perry, 1984). One of 
the most efficient method for data volume reduction 
is the use of sampling strategies (Hallum and 
Perry, 1984; Moreira et a7., 1986). Another 
approach when dealing with multispectral data, ;s 
to reduce the number of bands producing an optimum 
subset of bands (Labov i tz, 1986; Mause 1 et a 7. , 
1990; Sheffield, 1985). 

This study will be concerned with data volume 
reduct; on us i ng 11 band Airborne Themat i c Mappe r 
(ATM) imagery acquired in the early part of a crop 
season. Data volume reduction will be achieved by 
subset band se 1 ect i on and by the app 1 i cat i on of 
sampling strategies. The investigation into optimum 
band selection techniques will focus on the 
possibility of using only a fraction of the entire 
avai lable data set and the consequent level of 
accuracy reached in the classification. The 
samp 1 i ng st rateg i es will be used to ; nvest i gate 
what size of sample ;s necessary to estimate the 
proportions of different land cover classes within 
an acceptable error and assess the performance of 
three different sampling strategies. 

2. STUDY AREA AND DATA SOURCES 

The study area is located near Gedney Hill, 
Lincolshire, England, UK, about 25 kilometres 
north-east of Peterborough and 20 kilometres south­
east of Spalding. The area is topographically flat 
containing regularly shaped parcels used almost 
exclusively for cropping. Records shown that annual 
crops such as sugar beet, oil seed rape, barley, 
wheat, beans and potatoes, as well as fruit trees 
have been grown in the area. 

Ground data, which was used as reference data for 
the training process of the classifier and to 
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assess the classification accuracy, was collected 
on 27th Apri 1, 1989, the day after image 
acquisition. In the study area selected, crop type 
was recorded over 18 parcels distributed among 7 
classes (i.e., early stage wheat, mid stage wheat, 
late stage wheat, barley, early stage beans, grass, 
bare soil ploughed). In addition to the information 
of crop type in each parcel, the average heights of 
wheat, barley, and beans were recorded along with 
estimations of percentage cover biomass. Wheat in 
the different phenological stages exhibit heights 
of 12, 20 and 30 centimetres respectively. 

A Daeda 1 us AADS 1268 ATM 11 Channel Scanner was 
used to acquire the image data which was provided 
by the National Environment Research Council 
(NERC), under a research grant contract number 
GR3/70 20. Characte rist ics and techn lca 1 
descriptions of the ATM are given by Williams 
(1984) and White (1989). The acquisition date was 
26th April, 1989, at 09: 35 (GMT) and the 
characteristics were the following: Site number 
891/4; flight line 4; flight orientation south-west 
(i.e., 225 degrees); solar zenith angle of 48.8999 
degrees; solar azimuth angle of 130.2617 degrees; 
and flying height of 2,000 metres (nominal spatial 
resolution of approximately 5 metres). 

A potential problem with the ATM imagery is the 
effect of viewing geometry, which has two major 
components (Barnsley, 1984). Firstly, the wide 
swath angle of the sensor (42.96 degrees each side 
of nadir), and secondly, the relative azimuth angle 
between the sun and the sensor. Although the study 
area was at nadir position, ideally the data set 
should have been corrected for view angle effects 
and sun illumination, atmosphere effects, and 
geometrically and radiometrically corrected. 
Considering the major aim of the research and that 
multi-date data will not be used, these possible 
errors and effects were not considered. 

The ground data information was digitised and the 
average error of the warp was between 2 and 3 
pixels and this magnitude of error was considered 
as unacceptab 1 e for the study. One of the ma in 
reasons for such 1 arge errors is caused by the 
unstable nature of the aircraft platform. Changes 
in altitude, roll, pitch and yaw can seriously 
effect the geometric integrity of the image. Since 
this type of correction is far beyond the scope of 



this study and in order to overcome the problem, it 
was decided to digitise the ground data using the 
imagery itself. Problems emerging from the use of 
less stable platforms and the steps involved in 
geometric corrections of ATM imagery can be found 
in Devereux et a7. (1989). 

3. SUBSET BAND SELECTION 

An optimum subset of 3 bands from the original 11 
band ATM multispectral data set was selected. The 
use of a limited number of bands will reduce the 
data vo 1 ume and therefore, reduce the data to be 
processed. There has been a great deal of attention 
paid to the selection of band subset during the mid 
80's and it is still the subject of several 
studies. Sheffield (1985) considered the fact that 
the human eye uses three primary colours, and 
consequently the number of bands in a subset should 
be equal to three. Such a band combination provides 
colour composites images ideal for visual 
interpretation. 

Regarding the acquisition of information and 
thematic maps, Labovitz (1986) raised the question: 
'How good are remote sensing spectral bands as 
surrogate measures of ground attributes, e.g., 
biomass mapping, crop inventorying, and lithologic 
mappi ng?'. It was stated that in order to answer 
this question, the investigator should include 
selection of bands in the process of 
classification. Similarly, a question has been 
raised by Shen and Badhward (1986): 'How well can 
the classes be separated by observing the values of 
some feature vectors for a set of samples?'. The 
former quest ion i dent ifi es the need to defi ne an 
optimum sub-set of bands, while the latter 
necessitates a measure which allows the 
quantification of the amount of information. 

The amount of information content in a 
multispectral data set can be expressed in terms of 
the separability of the classes within a 
multidimensional feature space. This can be 
evaluated using a measure of statistical 
separability between bands. Swain (1978) 
illustrates the statistical separability in 
relation to the probability of error. Errors are 
proportional to the overlap region in feature space 
and the area of this region changes according to a 
def i ned 'norma 1 i se distance between the means', 
i.e., the absolute value of the difference between 
the means divided by the sum of the standard 
deviation. This distance is referred to a 
statistical separability measure. There are several 
methods for the calculation of the separability 
between bands (Mausel et aT., 1990; Shen and 
Badhwar, 1986; Shearn, 1986) . Transformed 
divergence analysis was used by Toll (1984) to 
assess and investigate land cover discrimination 
us i ng the best sub sets of two and th ree bands. 
Several conclusions were drawn concerning the 
elimination of specific bands to improve 
classification accuracy and reduce cost of 
processing. Mausel et aT. (1990), investigated the 
performance of four different methods of 
separability plus eigenvalue and eigenvector 
analysis used in agricultural applications to 
determine which would best identify a sub set of 
four channels. The J-M Distance and Transform 
Divergence separabi 1 ity methods showed the best 
results over the Bahattacharyya Distance and 
Divergence. However, it was concluded that the 
original number of channels, the number and nature 
of classes involved, and the method used can all 
have effect upon the results. 
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With the aim of selecting a sub set of three bands 
from the seven bands of Landsat Thematic Mapper, 
Sheffield (1985) used a method which provides a 
single preferred choice of a subset. The three band 
subset which is defined to contain most of the 
variance, is selected from the largest diagonal 
elements from the variance - covariance matrix. One 
problem that remains is the appropriate assignment 
of colours to the bands. The above study has shown 
that the natural colour combination (band 1,2,3) 
and the standard false colour composite (band 
2,3,4), are low in the ranking of best band 
combination. This was claimed to be the result of 
high band correlations. Several of the methods to 
determine the statistical separability are 
multivariate while others consider each band 
independent 1 y. Most of the mu 1 t i vari ate methods 
consider pairwise divergence which increases the 
computation. Fisher criteria lies in the latter 
category (McMorrow, 1985) and does not take into 
account any inter-band correlation. 

3.1. Method Adopted for Subset Band Selection 

In consideration to the fact that one of the aims 
of the project ;s to reduce processing time, Fisher 
criteria was chosen as an appropriate method for 
the calculation of statistical separability, and 
hence for the optimum band selection. Furthermore, 
the decision was also based on the following 
factors: (1) the calculation involved in the method 
is simple and uses basic statistics, (2) computer 
time required is minimal, (3) previous applications 
have shown good results. As mentioned above, the 
method chosen does not consider the inter band­
correlation. To overcome this deficiency the use of 
a correlation matrix was adopted. Additionally, the 
utilisation of the knowledge of vegetation spectral 
responses in the range of the electromagnetic 
spectrum covered by the ATM bands was adopted. Toll 
(1985) concluded that the best spectral 
discriminations were obtained from the visible, 
near infrared, and middle infrared regions. 

In summary, the selection of the optimum subset was 
based on (a) Fisher criteria, (b) Correlation 
between bands, and (c) Knowledge of vegetation 
spectral responses in the ATM bands. To calculate 
the 'Fisher criteria values' for each of the 11 ATM 
bands, the following equations were implemented in 
a Fortran program. The Fisher criteria method is 
based on the statistics of each class pair. It uses 
a measure of interclass distance, and as such 
est i mates the effect i veness of a sing 1 e band at 
separating the classes. Bands are then ranked in 
order of effectiveness. The method which is adapted 
from Siegel and Gillespie (1980) is calculated as: 

(1) 

Where diik is the distance separating class i from j 
in band" k, Mik and M'k are the (kth) means of each 
class in band k, ujk And Ujk are the variance of each 
class in band k. The Fisher criteria values for the 
11 bands (Table 1) was calculated with the 
following equation where m is the number of 
classes: 

m-1 m 
Dk = i~1 j=r+1 dijk ~) 

Upon examination of the correlation matrix, the 
highly correlated bands can be spotted quite easily 
(Table 2), i.e., those with a value approaching 
1.0. The high correlations between the visible 
bands are an example of this. In the near infrared, 
bands 6 and 7, and bands 7 and 8 exhib1t 



correlations of, 0.940 and 0.955, respectively. 
Bands 6 and 8 also shown a high coefficient 
(0.817). 

Band Fisher Criteria 

1 15.2139 
2 38.2585 
3 36.5790 
4 45.5791 
5 35.2813 
6 136.2813 
7 157.1967 
8 154.9301 
9 49.0035 

10 39.5124 
11 75.6195 

Tab 7e 1. Va 7ues of the Fisher Criteria for the 
A TM band 1 to 11 

Bands 
10 11 

1 1.000 
2 0.846 1. 000 
3 0.817 0.944 1.000 
4 0.651 0.905 0.903 1.000 
5 0.838 0.950 0.957 0.900 1.000 
6 0.533 0.223 0.294 -0.041 0.299 1.000 
1 0.318 -0.030 0.060 -0.260 0.036 0.940 1. 000 
8 0.134 -0.170 -0.058 -0.341 -0.119 0.817 0.955 1.000 
9 0.105 0.665 0.730 0.592 0.723 0.571 0.440 0.391 1.000 

10 0.506 0.759 0.749 0.800 0.772 -0.097 -0.250 -0.279 0.667 1.000 
11 0.262 0.521 0.478 0.626 0.526 -0.390 -0.572 -0.633 0.268 0.714 1.000 

Tab7e 2. Corre7ation Matrix for the ATM Band 
to 11 

By examining Table 1 alone, the selection of an 
optimum subset is straight forward, i.e., bands 6, 
7 and 8 due to their high Fisher Criteria values. 
However, the correlation matrix in Table 2, shows 
that the above subset should be rejected because of 
high correlation. Thus in order to achieve an 
opt i mum subset of bands, the methods have been 
combined with a knowledge of the spectral response 
of vegetation. Consequently, band 7 (near 
infrared), band 9 (middle infrared) and band 4 
(visible) were selected as the optimum subset of 
bands. 

4. DIGITAL CLASSIFICATION 

A supervised minimum distance classifier was used 
for the digital classification. The decision rule 
of the method is computationally simple and 
spreadly used. Hixson et a7. (1980), when comparing 
several classification methods, ranked the minimum 
distance algorithm as the least complex, and with 
respect to cost per square ki lometre for 
classification (not including cost for developing 
training statistics), the most cost effective. 

Training statistics were used based in more than 
one training area for each land cover class. Since 
ground data information was available from the area 
to be classified and not from outside areas, 
contiguous pixels were adopted (Labovitz, 1986). 
The shape chosen for each area was a rectangle and 
each of them was displaced perpendicularly along 
the larger axis of the field. The number of pixels 
used for each class was accordingly Richards's 
(1986) recommendation. Two data sets were selected 
for classification, i.e .• standard false colour 
composite (bands 7,5,3) and the subset selected by 
optimum band selection process (bands 7,9,4). The 
data sets were modified according to some 
preprocessing techniques such as masking and 
spatial filtering. Masking techniques were used in 
order to (a) eliminate unwanted areas surrounding 
the site, (b) to eliminate unwanted areas within 
the site and (c) to eliminate boundary pixels. 
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Spatial filtering techniques can be used to improve 
the accuracy of multispectral classifications and 
this is achieved by reducing the within class 
variance. However, a factor which should always be 
considered when using spatial filters, is the 
inclusion of boundary pixels within the filter. 
Many authors have dealt with the relationship 
between the type and size of spatial filters, image 
pixel size, type of land cover, and classification 
accuracy (Atkinson et a7., 1985; Cushnie 1987' 
Cushnie and Atkinson, 1985; Gong and Howarth 1990: 
Harris, 1985). With particular reference to per~ 
point classification of fine spatial resolution 
data, Cushnie and Atkinson (1985) suggested some 
guidelines regarding the use of spatial filtering 
as follows: (1) blurring or smoothing of the 
imagery is potentially useful for reducing the 
variability of the digital values within individual 
land cover units, (2) the smoothing operation 
should avoid blurring all forms of boundaries 
between different land cover units in every 
orientation and at any scale, (3) neither of these 
ope rat ions must take place at the expense of the 
other, i.e., the variability must be smoothed 
without removing or distorting the boundaries. 
Since the use of spatial filtering modifies the 
frequency and spatial distribution of boundary 
pixels, the filters were applied to reduce the 
within field variability and were not concerned 
with the proportions of boundary pixels and the 
like. Masking techniques were used to eliminate 
boundary pixels and pixels from unwanted areas 
(e.g., from farm houses and canals) within the site 
selected. Thus masking and spatial filtering 
techniques were always used together. 

4.1. Classification Accuracy Assessment 

I n a gene ra 1 context, if remote 1 y sensed data, 
derived products and respective numerical data are 
to be appl ied by a user community, a methodology 
must be implemented for the assessment of 
classification. There are several methods which can 
be adopted and there is no simple, standardised, 
generally accepted methodology for determining 
classification accuracy. The classification 
accuracy assessment was carried out as a site 
specific procedure where the classified images were 
compared to the ground data i nformat i on and the 
output of the comparisons were drawn in confusion 
mat rices. A p rog ram was des i gned to enab 1 e the 
se 1 ect i on of the samp 1 i ng procedu res (random and 
stratified random sampling), and the total number 
of pixels to be tested. Classification accuracy 
tests were performed on the classified images using 
five sample sizes, (i .e., 665, 1040, 1849, 4160, 
and 16641 pixels), corresponding to a confidence 
level of 99% and using random sample and stratified 
random sampling techniques. In terms of number of 
pixels, the sample sizes represent 0.25%, 0.40%, 
0.70%, 1,60%, and 6.35% respectively of the total 
area (512 x 512 pixels). 

4.2. Classification Results 

Fi gure 1 and Fi gure 2 show the overa 11 accuracy 
percentages for the two data sets using random 
sampling and stratified random sampling with 
different sample sizes. Additionally, Figure 3 and 
Figure 4 outline the per class accuracies including 
errors of omission and errors of commission. The 
errors of omission are the opposite of the overall 
accuracies, and errors of commission are related to 
the reliability, i.e., the lower its percentage the 
higher its reliability. Examination of the 
resultant overall accuracies (Figures 1 and 2) show 



that it is not possible to detect a common pattern 
as a result of the utilisation of different sample 
sizes. 

Figure 1 
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Overa 1 1 accuracies (%) in Band 7,5,3 
and Band 7,9,4 using different samp7e 
sizes (random sampling) 

However, better results are achieved with the use 
of the opt i mum subset, Bands 7,9,4. When us i ng 
Bands 7,5,3 the overall accuracy range from 88.63% 
to 91.40%, and for Bands 7,9,4 from 90.53% to 
93.45%. Also, there are s imil ar factors in the 
tests. Firstly, the very similar accuracies when 
larger sample sizes were used, and secondly, 
slightly better accuracies when using stratified 
random sample. 

Figure 2 
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Analyzing the results when using a sample size of 
1848 pixels (264 per class) with stratified random 
sampling, greater overall accuracy is achieved 
using the optimum subset selected, Band 7,9,4, 
(i.e., 92.41%) rather than the standard false 
colour subset, Band 7,5,3, (i.e., 91.40%). Normally 
a sample size equal to 100 pixels per class is 
recommended (Hay, 1979), (see Figures 3 and 4). In 
the per class accuracies, the advantage of Band 
7,9,4 is very clear. The per class accuracies 
increased in most of the classes with exception of 
class 1 and 3. Errors of commission drop 
dramatically in all the classes proving the 
reliability of using Band 7,9,4. This leads to the 
conclusion that the inclusion of a middle infrared 
band in the optimum sub set selected (i.e., band 9) 
contributed to class separability, particularly 
those classes with early stage crops where the 
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vegetation present has a high moisture content. 

Figure 3 

Figure 4 
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5. THE USE OF SAMPLING IN AGRICULTURAL 
CROP AREA ESTIMATION 

Data volume reduction was successfully achieved by 
the selection of an optimum subset of bands, using 
a feature selection technique. This section is 
conce rned wi th the app 1 i cat i on of samp 1 i ng 
techniques as a further mean of data volume 
reduction. The sampling techniques investigated 
inc 1 ude random samp 1 i ng, systemat i c samp 1 i ng and 
stratified unaligned random sampling and will be 
evaluated in terms of area estimation. 

Sampling is a technique commonly adopted in remote 
sensing projects. The required information can 
usually be adequately provided by a sample of the 
original data (Jolly, 1981), The Large Area Crop 
Inventory Experiment (LACIE) carried out in the mid 
1970' sis a well known project whi ch used and 
generated sampling methodology as part of its area 
estimation phase (Hixson et a7., 1981). Prior to 
the LACIE project, Bauer et a7. (1978) used a 
sample of pixels from full-frame imagery in order 
to classify Landsat data. The pixel sampling 
approach demonstrated the capability of producing 
unbiased and precise results for area estimation. 
The AgRISTARS (Agriculture Resources Inventory 
Surveys Through Aerospace Remote Sensing) project 



which began in 1980 aimed to develop and test 
procedures using sample surveys of remotely-sensed 
data. It demonstrated the appl icabil ity of the 
sample survey approach to more than one crop 
(Hallum and Perry, 1984). Hixson et a7. (1981) used 
repetitive sampling with the intention to 
simulating alternative sampling strategies for 
full-frame classified images of 80 counties in 
Kansas USA. Evaluations were made concerning the 
costs of the sample approach and the precision 
attained. Results show that the most accurate 
estimates were obtained from pixel sampling. In the 
above studies, crop areal estimations were obtained 
using different sampling approaches. The common 
feature of each of these methods is the integral 
selection of a representative sample for further 
analysis. The motivations behind this are mainly 
high costs and the time-consuming nature of 
conventional processing. Several studies have 
demonstrated that the use of sampling is efficient 
for crop areal estimations, especially in 
applications where a complete survey is not 
economically feasible. Data volume reduction is 
implicit in all remote sensing projects which 
employ sampling strategies and procedures. 

5.1 The application of sampling to classification 

In this study, the parameter population was the ATM 
opt imum subset se lected, bands 7,9,4, 512 by 512 
pixel size image and the sample unit was taken to 
be individual pixels. As remotely sensed data from 
a region or area is spatially autocorrelated, every 
measurement will contain some information about the 
neighbourhood of each pixel. The adoption of 
individ~al pixels will allow maximum spatial 
dependence and contribute to the minimisation of 
the autocorrelation. Techniques including 
semivariograms can be used to estimate the spatial 
autocorrelation (Curran and Williamson, 1986; 
Atkinson, 1987). The evaluation and use of sampling 
strategies will be determined by the proportions of 
the different land cover classes already 
classified. After the digital classification, the 
number of pixels representing each land cover 
feature are related to the total number of pixels 
used in the classification. The result is the 
proportion of the land cover feature in the whole 
image. This approach is only used in order to 
facil itate the handl i ng and computation of the 
data. The aim and principles of the whole sampling 
procedure adopted can easi ly be transferred to a 
situation where the classified image data is not 
available and the idea is that only those pixels 
included in the selected sample from the original 
data (i.e., in a non-classified image) will then be 
used in the digital classification. And so, a 
reduced volume of data would be used in the 
classification instead of the whole image. 

5.2. Sample size 

In order to determine the sample size, some basic 
elements have to be specified. A review of sampling 
theory is provided by Cochran (1977) and Davis 
(1986). In a sample, all categories of the entire 
population (sampled population) require 
representation (Cochran, 1977). One method of 
evaluating whether a sample is a good estimator of 
the population is to use the sampling distribution 
parameter, which is the distribution of values that 
the sample mean can take from all the possible 
samples that could be drawn from the population. An 
unbiased sample can occur when the mean of the 
sampling distribution is equal to the mean of the 
population. Another parameter is the sampling 
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variance (which should be as low as possible), and 
its equation is as follows: 

2 (x - U)2 
S = ------------ (3) 

(n - 1) 

Where S2 is the sampling variance, x is the mean of 
each sample, u is the population mean, and n is the 
sample size. In order to avoid this calculation for 
every sample, the sampl ing variance can be 
estimated from the population variance. When (N-n) 
/ (N-i) approaches one, the equation becomes S2 = 
Q2/n (4), where S2 is the sampling variance, Q2 is 
the population variance. However, since the 
population variance is not known, it must be 
estimated from the variance of the sample. To 
determine the level of precision (or 'confidence 
limit') and the degree of certainty (or 'confidence 
level'), the standard error (s.e.) is used which is 
s.e. = Q/nO. 5 (5). This may also be used as an 
alternative to sampling variance. The confidence 
limit then becomes; c = +/- z(s.e.), where c is the 
confidence level, z is the standard error unit for 
the desired confidence level. The first step in 
creating a sample size scheme is the calculation of 
the variance of the proportion: S2 = P(i - P) (6). 
P is the proportion of the population or class of 
interest and has values between 0 and 1. This value 
must be estimated, and in this case, ;s chosen to 
be different for each land cover class in order to 
ensure that an adequate sample size is always used. 
The maximum value of variance is calculated when P 
is equal to 0.5. Variance decreases as P moves away 
from 0.5. The sample size is then calculated by the 
following equation (Curran and Williamson, 1986): 

(z . V)2 
n = ---------- (J) 

c2 

Where n is the sample size, z is the standard error 
unit for the confidence level chosen with n-1, v is 
the standard deviation for the proportion of the 
correctly classified pixels (P(1-P), and c is the 
confidence limit. Using the above equation and the 
desired confidence level and confidence limit, a 
number of sample sizes were determined to be used 
in the sampling procedure to estimate the 
proportions of the classes. The confidence level 
determines the probability that the estimate will 
lie within the confidence limit of the true 
proportions. 

5.3. Estimation of the proportions of each land 
cover class 

To est imate the proport ions of each 1 and cover 
class the optimum subset of bands 7,9,4 was used as 
input. The proportion for each land cover class was 
calculated by dividing the number of points 
se 1 ected ; n each class by the tota 1 numbe r of 
points selected. The error of this estimation is 
the result of the subtraction by the original 
proportion of the classified pixels in each land 
cover class. Finally, a weighted error was 
calculated by relating the percentage estimation 
error to the original proportions from the 
classified image. The estimated errors were 
weighted in relation to the 'true' proportions 
according to the size of each land cover class in 
order to take into account the different size of 
each class. To illustrate this, using the extreme 
classes in relation to their sizes an estimated 
error of 1% in class two (Mid stage wheat), 
corresponds to 399 pixels. The same estimated error 
in class four (Grass), corresponds to 17 pixels. 
Furthermore, the weighted error expresses the 
accuracy of estimation attained by the sampling 



procedure in relation to the original proportions 
(i.e., results form the classification of Bands 
7,9,4). Different sampling strategies and different 
sample sizes were adopted and the outputs, 
(estimated proportions and estimated errors) were 
the result of an average as the computation was run 
automatically 10 times. 

In order to evaluate the performance of each 
sampling strategy employed, results from three 
sample sizes were assembled in terms of the 
weighted errors obtained from all classes. The 
sample sizes were, 1040, 4160 and 16640 pixels; S-
1, S-2 and S-3 respectively (Figures 5, 6 and 7). 
Furthermore, the 'true' proportions of each class, 
the estimated proportions and the related weighted 
errors are displayed in Figure 8. 

5.4. Results 

It was assumed that the sampling strategies gave an 
unbiased estimation of the 'true' proportions. It 
was not possible to obtain the variance of the 
sampled population, but only the average 
estimations (run 10 times), Therefore, an 
evaluation using the confidence limits could not be 
carried out. Nevertheless, the average estimated 
errors were low for any sampling strategy and they 
reside very close to the confidence limit related 
to the sample sizes which were used. In Figures 5, 
6 and 7, the weighted errors start from about zero 
and in the random sample strategy, reach 14%. The 
systematic sample gives the lowest errors with a 
maximum of approximately 3%, and in the stratified 
unaligned sample, about 5%. This can be explained 
by the characteristics involving the systematic 
sample where the sample points are distributed over 
the entire area, and thus avoiding the possibility 
of clustering. The latter has a relatively high 
chance of occurring with simple random sampling. 

Results from the systematic sample and the 
stratified unaligned sample show small weighted 
errors when compared with random sample. It was 
clear that sample sizes are related to the 
resultant weighted error. Using the smallest sample 
size, weighted errors show a tendency to increase. 
The lowest errors are related to the biggest sample 
and a common pattern can be established which is 
presented in each land cover class; the smaller the 
sample size, the greater the errors and vice-versa. 
(The samp 1 e sizes in te rms of pe rcentage of the 
whole image represent 0.4%, 1.6% and 6.4%). 

Figure 5 
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Figure 6 

Figure 7 
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Better results were obtained from the use of 
systematic random sampling. When using a sample l 

size of 16641 pixels and systematic random sample 
(Figure 8), the mean absolute error stays around 
1%. In relation to the size of the class, it can be 
observed that class four, which is the smallest, 
generally exhibits high errors. 

Figure 8 
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6. CONCLUSIONS AND RECOMMENDATIONS 

The procedure for feature selection which includes 
one band from each part of the electromagnetic 
spectrum wi 11 achieve improved results over the 
standard false colour composite. Results from the 
optimum subset band selection used (Fisher 
criteria), show high indices in bands from the 
visible, near-infrared, and middle-infrared. The 
comparison of the classified results from both 
subsets, demonstrate the usefulness of using a non­
empirical band selection method in early season 
agricultural data. Addressing the relationship 
between sample size and the size of the land cover 
classes, the lowest errors are obtained from the 
largest classes. This is a general pattern for half 
of the classes (i.e., with the exception of classes 
4, 3, 7, and 6). Therefore, there is a relationship 
between samp 1 e and size of the classes, and in 
order to define a sample size for data volume 
reduction, the above factor should be considered. 
It can be concluded that a sample size representing 
6.4% of the data set will result in the lowest 
errors and this figure is suggested for this study. 
Nevertheless, an optimum sample size to be used in 
the classification of a raw image, could be the sum 
of specific samples for each of the land cover 
classes accordingly to their spatial size and 
autocorrelation characteristic. 
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