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ABSTRACT 

Significant spatial dependence may mask the proper selection of crop genotypes in yield performance 
trials, often leading to the release of genotypes less adapted than expected. Our objectives were to estimate 
the effects of spatial dependence on remotely-sensed vegetation and grain yield data, and evaluate a combined 
remote sensing-spatial method to improve the analyses of breeder trials. Variograms of the classical 
residuals demonstrated little spatial structure. Conversely, variograms of deviations from the mean showed 
large spatial dependence, from 40 to 95% of the sample variance. A combined remote-spatial method was used 
to successfully remove spatial dependency effects in the breeder trial experiment. The mean square error of 
the classical ANOVA was reduced from 24 to 65% by applying the combined remote-spatial method, significantly 
increasing the precision with which differences could be distinguished. 
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INTRODUCTION 

Grain yield of spring wheat can be considered as the 
integrated response of genotype to a specific field 
environment. Yields are affected by large- and 
small-scale spatial dependencies, which inflate the 
error variance in the ANOVA of field-plot 
experiments (Ball et al., 1992a,b; Bhatti et al., 
1991; Mulla et al., 1990). Since spatial dependence 
contributes to the error term of the ANOVA, this 
variation reduces the precision with which plant 
breeders can identify real genetic differences. 
Recent research indicates that from 10 to 54% of the 
sample variation in the grain yields of wheat field­
plots may be spatially structured (Samra et al., 
1990). 

In order to identify and remove spatial dependency 
from breeder trials, researchers need methods to 
quantify this heterogeneity which do not require 
elaborate statistical designs. Complicated designs 
result in practical limitations for plant breeders 
and consequently they are rarely employed in the 
analyses of agricultural field experiments (Ripley, 
1988). Although applications are yet few, it has 
been recommended that low-altitude aerial 
photography be used as a new complementary method in 
the analysis of field-plot breeder trials (Ball et 
al., 1992a; Clevers, 1988; Curran, 1988; Dancy et 
al.,1986). 

Recent progress in remote sensing suggests that 
aerial photographs, combined with spatial 
statistics, may be modified to provide plant 
breeders with the tools needed to adjust for the 
effects of spatial dependence in field experiments 
(Ball et al., 1992a; Jupp et al., 1989; Rees, 1990). 
The objectives of this study were to estimate the 
effects of spatial dependence on remotely-sensed 
vegetation and measured grain yield data, and 
evaluate a combined remote sensing-spatial method to 
improve the analyses of breeder trials. 

MATERIALS AND METHODS 

The Washington State Uniform Spring Wheat Variety 
Trial was planted on 0.72 ha sites near Lind, 
Davenport, Mayview, Pullman, Royal Slope, and Walla 
Walla, WA during the 1990 growing season. These 
locations were chosen to represent differences in 
climatic zones and soil conditions. Cultural 
practices appropriate for the area were employed for 
all experimental materials. Plot size for the 
breeder trial was approximately 1,4 m wide by 4.9 m 
long. Each plot was eight rows, sown 15 cm apart, 
with a 0.3 m gap between plots. Grain was combine­
harvested from each plot at a time slightly past 
physiological maturity of the latest maturing 
genotypes. 

Infrared aerial photographs of the crop were taken 
on June 23 at Davenport and Walla Walla, on June 30 
at Pullman and Royal Slope, and on July 7, 1990 at 
Lind and Mayview. Equipment included a Cessna 172 
aircraft, a Canon Fl camera with a 50 mm lens and 
Wratten #12 gelatin filter, and Kodak 2236 infrared 
film. Flight altitude was about 300 m and ground 
speed was 100 km h-1 . Each flight was carried out 
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under sunny atmospheric conditions. Thus, the 
camera settings were not altered between locations 
and flights. All of the photographs were of the 
variety trial and surrounding area. 

Near infrared and red wavelengths were selected from 
the images because the reflectance in each 
wavelength is related to crop cover. The green 
wavelength was not used because its values were 
highly correlated to the red values. Transmittance 
of the 35 mm transparencies were measured with a 
Howtek scanner at 1024 x 1024 resolution. Digital 
images which consisted of brightness values were 
related to the density of the film emulsion and 
these values converted to reflectance. The infrared 
and red bands from the images were selected for 
statistical analysis because the reflectance in each 
wavelength is related to crop cover. 

rhe 33 genotypes were arranged in a RCB design with 
four replicates and the main effects were estimated 
using (Neter et al., 1990): 

Yif ~ + Pi + 'tj + Eij , i=l, ... , I; j=l, ... ,J (1) 

Where Y ij is the response for the j th treatment in i th 

block; 11 .. is the overall mean; Pi are the block 
effects; 't are the treatment effects; and Eij are 
the random errors that are assumed to be NIv (0, 
a 2 ). The classical residuals obtained from the RCB 
model are: 

(2) 

The classical residuals can be considered as 
regionalized variables for plot errors and it is 
assumed that the main effects are correctly 
estimated. 

Because the main effects may not be accurately known 
when significant spatial correlation between plots 
exists, we considered an additional regionalized 
variable (measure of error). These data are the 
deviations from the mean and they were computed 
using: 

(3) 

where 't j is the genotype mean, equivalent to the 
treatment effects in equations (1) and (2). In 
contrast to the classical residuals, deviations from 
the mean do not remove the replication or overall 
mean effects. 

Nearest-neighbor analysis (NNA) is an iterative 
method with which the mean effects are estimated 
from a comparison of yields in neighboring plots of 
different genotypes. The NNA model is (Mulla et 
al., 1990): 



(4) 

where Yij is the yield of the i th plot having the j th 

gen?type; ~j is the estimate of the treatment mean; 
3 i ~s the estimate of the soil trend; and Ei is the 
effect of local uncorrelated errors assumed to be 
NID (0, oZ). The NNA adjusted infrared and red 
values, as well as the yield data for each plot were 
applied to the RCB design and analysis (Eq. 1) to 
obtain the predicted genotype means. Detailed 
descriptions of de trending and nearest-neighbor 
analyses are given by Bhatti et al. (1991) and Mulla 
et al. (1990). 

Variograms of classical and non-classical deviations 
for yield, infrared, and red values were used to 
evaluate the statistical assumption of independent 
errors. Slopes> 0 and intercepts < 1 indicate a 
spatial dependency. The semivariogram was estimated 
from the formula: 

(5) 

where Yk(h) is the semivariogram of random variable 
Zij; N(h) is the number of deviation pairs within a 
given range of distance h; Xk is the data point 
location, and Xk+h is the data point separated by h 
from Xk . We used normalized semivariances for each 
variogram model. 

The best fit, according to the least squares 
criteria, to the semivariance values was given by 
the linear model: 

y(h) (6) 

where Co (nugget variance) is due to experimental 
and measurement error and genotypic variation that 
occurs within a distance shorter than h. The 
estimated slope function is C1 . When C1 = 0, the 
variogram indicates purely random variation which is 
the condition required by the classical RCB ANOVA. 

In an attempt to compensate for the effect of 
spatial correlation on genotype estimates an 
analysis of covariance using near infrared and red 
deviations as covariates was conducted on the NNA­
adjusted yield data. This model was: 

where ~ .. , Pi' 'j' and Eij were previously defined 
for the RCB model (Eq. 1) and wl and Wz are 
regression coefficients for the relation between Y ij 
and Zijl and ZijZ' The covariates were expressed as 
a dev~ation from the overall mean. The Eij are 
random errors assumed to be NID (0, oZ). The SAS 
procedures, GLM, LSMEANS, MEANS, and UNIVARIATE, 
were used to perform the analyses of yield, as well 
as the near infrared and red values (SAS, 1988). 

RESULTS AND DISCUSSION 

Except for the grain yield data at Royal Slope, 
variograms of the classical residuals from the RCB 
model showed no spatial structure (Table 1). Thus, 
considering only the variograms of classical 
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Fig. 1. Plot of the normalized linear variogram 
using deviations from the mean for grain yield data 
near Royal Slope, WA (see Table 1 for 
interpretation). 

residuals, we might conclude that the errors are 
spatially independent. To further evaluate the 
assumption of independence and small-scale spatial 
dependence between plot errors, we conducted spatial 
analyses using non-classical deviations (deviations 
from the mean) for grain yield. These variograms 
generally showed that the errors between plots were 
not randomly distributed, because the slopes were 
non-zero and intercepts were less than unity (Figs. 
1, 2, 3). An exception was grain yield at 
Davenport, possibly because of nonuniform cultural 
and management practices (Table 1). The variograms 
increased smoothly with increases in separation 
distance for grain yield, near infrared and red 
values (Figs. 1, 2, 3). Although the remotely­
sensed data had larger slopes and smaller 
intercepts, the spatial patterns were consistent 

Table 1. Spatial structure demonstrated by the classical residuals and the deviations from the mean of grain 
yield and reflectance parameters at six diverse locations in eastern, Washington. 

Parameter 

Grain yield 

Near infrared 

Red 

Grain yield 

Near infrared 

Red 

Measure of 
error 

Residual 
Deviation 

Residual 
Deviation 

Residual 
Deviation 

Residual 
Deviation 

Residual 
Deviation 

Residual 
Deviation 

Davenport 

Random 
Random 

Random 
Structured 

Random 
Structured 

Pullman 

Random 
Structured 

Random 
Structured 

Structured 
Structured 

Interpretation of spatial structure 

Random 
Structured 

Random 
Structured 

Random 
Structured 

Royal Slope 

Structured 
Structured 

Random 
Structured 

Random 
Structured 
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Mayview 

Random 
Structured 

Random 
Structured 

Random 
Structured 

Walla Walla 

Random 
Structured 

Random 
Structured 

Random 
Structured 



Table 2. Classical and the remote-spatial ANOVA of grain yield from a breeder trial experiment conducted at 
six diverse locations in eastern, Washington. 

Source of Davenport Lind Mayview Pullman Royal Walla 
variation df Slope Walla 

Mean square 
Classical ANOVA 

Replication 3 ** >\: ** ns ** ** 

Genotype 32 ns ns ns ns ns * 

Error 96 

R2 value 35 32 51 30 55 63 

Remote-s12atia1 ANOVA 

Replication 3 ns ns ns ns ns ns 

Genotype 32 ** ** ** ** ** ** 

NIR covariate 1 ** ns ns ** ns ** 

Red covariate 1 ** ns ns ** * ** 

Error 94 

R2 value 77 73 81 81 70 95 
MSE reduction 24 46 46 60 42 65 

ns,*,** Denote nonsignficance, significance at the .05, and .01 levels of probability. MSE reduction - % 
reduction in mean square error compared to the classical ANOVA. 

with those for grain yield. These results 
demonstrated that the assumed independence of errors 
required for the breeder trial RCB ANOVA was not 
satisfied. This was because the local controls 
i.e., replication and randomization, did not 
successfully neutralize the small-scale spatial 
dependence effects between plots. 

Genotypic effects at all locations, except Walla 
Walla, were not statistically significant when using 
the classical ANOVA (Table 2). These 
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Fig. 2. Plot of the normalized linear variogram 
using deviations from the mean for near infrared 
data near Walla Walla, WA (see Table 1 
interpretation). 

results suggest that classical ANOVA failed to 
compensate adequately for local-scale spatial 
effects, showing that spatial heterogeneity 
decreases precision. Grain yield at Davenport and 
Pullman showed nonsignificant replication effects, 
probably due to large mean-square-error (MSE) 
values, implying that small-scale dependence exists 
at these field-sites. 

The remote-spatial method was employed to remove the 
spatial trends and correlated errors between 
adj acent plots (Table 2). At four of six field­
sites (Davenport, Pullman, Royal Slope, and Wal;l.a 
Walla), the F-values for covariate effects were 
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Fig. 3. Plot of the normalized linear variogram 
using deviations from the mean for red data near 
Pullman, WA (see Table 1 for interpretation). 

significant (P~0.05). In contrast to the classical 
ANOVA, genotype effects were highly significant 
(P~O.Ol) for grain yield at each field-site. 
Replication effects were always nonsignificant with 
the remote-spatial method. The reason for the 
significant genotype effect was the large reduction 
in MSE values. Dramatically reduced MSE values 
(from 24 to 65%) increases the precision with which 
differences among the spring wheat genotypes can be 
identified. These results indicated that the 
remotely-sensed data explained a substantial 
proportion of the sample variance and illustrates 
why plant breeders should model spatial 
heterogeneity in yield trial experiments. 

CONCLUSIONS 

These results suggested that inexpensive, digitized 
aerial photographs can be combined with spatial 
statistical methods to improve the accuracy in 
estimating grain yields of spring wheat. This 
approach increased our understanding of the diverse 
problems posed by field spatial dependence. 
Complicated spatial patterns also may be elucidated 



by this approach, resulting in a greater level of 
confidence with which lower performers are 
eliminated at different locations. A combined 
remote-spatial tool such as presented here may be an 
effective means to account for the spatial 
heterogeneity in grain yield patterns observed in 
breeder experiments and other field studies. The 
results suggest that other practical applications of 
this method could include: (i) estimating optimal 
plot and block configurations, and (ii) mapping of 
commercial fields to guide management practices. 
For plant breeders, the bottom line is that 
substantial spatial dependence may distort the true 
ranking of genotypes in breeder trial experiments. 
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