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ABSTRACT: One of the problems of interpreting landforms by an expert system is the definition of an 
initial space state by reducing the infinite number of landform types to plausible candidates. In this paper 
we focus on the initial space states. In particular, we investigate the set size of plausible candidates, and the 
associated control strategy and search techniques. The comparison of different strategies and techniques 
in view of landform identification and terrain analysis lends itself into recommended specifications of an 
expert system with which the problem should be solved. 

1 BACKGROUND 

Expert systems and their roles in image interpretation re­
ceive great interest nowadays (Argialas, D., 1988; Mintezer, 
0., 1989; Bolstad, P. et al., 1991). Artificial Intelligence 
(AI) is defined as "the study of how to make computers 
do things) which at the moment) people do better" (Rich, 
E., et al., 1991). The problem of image interpretation is in 
quite compliance with this definition; and therefore, image 
interpretation is recognized as an AI problem. 

Expert systems are considered as "vigorous pad of 
the burgeoning field of artificial intelligence" (Edmunds, 
R., 1988). Many definitions of expert system exist today. 
Bowerman, R., et al., 1988 define it as follows: "An expert 
system is a system of software or combined softuwre and 
hardware capable of competently executing a specific task 
usually performed by a human expert." One of the most 
important aspects of an AI system is the search strategy 
(Patten, J.,1991; Rich, E., et. al., 1991; Barr, A., et al., 
1982). After the knowledge acquisition is completed, a 
suitable search method must be selected. 

Today, two main types of limitations can be observed 
in the AI field. These limitations are technical limitations, 
such as storage problems and theoretical limitations, such 
as the general lack of understanding that characterizes the 
field of AI, vis-a-vis the way human minds process knowl­
edge. 

With the rapid advancement in the hardware technol­
ogy, the technical limitations become less significant. The 
theoretical problem is improving slowly, and acceptable 
approximations to human reasoning are available. Scien­
tific experiments are essential to provide suitable theoreti­
cal bases about how human minds process large knowledge 
bases in a matter of microseconds. 

In the next section we analyze the problem of inter­
preting landforms based on terrain analysis. Then we in­
vestigate different search strategies followed by developing 
a control strategy that takes into account the technical 
and theoretical limitations of AI. Finally, we describe a 
rule-based program that combines the establish-and-1'efine 

and orde1'ed state space search strategies. 

605 

2 STATE SPACE SEARCH AND CON­
TROL STRATEGIES FOR ITA 

To provide an acceptable state-space search and control 
strategy for Image Interpretation Using Terrain Analysis 
(ITA), a conceptual view of the problem should be inves­
tigated. There are three general factors based on which 
a control strategy can be qualified for an ITA problem. 
The first factor is the nature of the problem, which can 
be revealed based on a careful task analysis. The second 
factor is the experts' methods of attacking the problem in 
the real world. The final factor is the intended capacity of 
the system (scalabili ty ). 

2.1 A Real World Human Model for ITA 

Before any strategy can be devised for an expert system, a 
. proper task analysis must be performed (Chandrasekaran, 
B.,1992 and Patten, J., 1991). The following paragraphs 
discuss ITA for the purpose of identifying landforms and 

. deducing their parent materials and characteristics for site 
analysis and evaluation. 

First, the ITA task is properly accomplished by ex­
perts in the field but not by computers at the moment. 
Therefore, landform identification for site evaluation pur­
poses is commonly acknowledged to be an AI problem. 
The other aspect of the problem is that while many facts 
are well documented in different sources, such as books, 
reports, and maps, the most important knowledge for ITA 
is written nowhere but in the minds of the experts. This 
knowledge contains the strategy of approaching the prob­
lem at different circumstances. 

To the question "How did you do it?" an expert may 
reply "It is easy! Well. .. .I know it, but I do not know how 
I know it". It is this part of the problem that points out 
the missing links in the chain of the theoretical aspects of 
AI (Patten, J., 1991). Also, this part of the puzzle calls for 
more research and exploration to uncover the high level of 
intelligence required for introducing AI systems into image 
interpretations in general. 

ITA possesses two important AI properties. First, the 



problem consists of many concepts that can be decom­
posed, within a general domain, into many subconcepts 
according to certain criteria (Hoffman, R., 1989a; Mintzer, 
0., et al., 1984; Mintzer, 0., 1988; Strahler,N., 1981; Way, 
D., 1973; Zuidam, R., 1985). The other property of the 
problem is the way the solution is obtained by a human 
expert. At the beginning the solution is very general; then 
it is refined until specific conclusions are reached (Way, 
D., 1992). This property, called coarse-to-fine property, 
is more obvious in relatively hard and very hard (com­
plex terrain) environments. The coarse- to-fine property 
is known in AI fields as hierarchy classification property. 
These two properties of the problem are indicative and 
to a large extent determinative of what control strategies 
should be devised in AI systems that are to be developed 
for the ITA problem. 

Analysis of processing more than forty models in the 
field, processed by a recognized expert, indicated that a 
human expert analyzes the ITA problem in a consecutive 
logical way. Figure 1 shows a human analysis model for 
the problem. The model consists of five major phases or 
modules: 
1. Adjustment module 
2. Initial settings module 
3. Transition phase module 
4. Hypotheses module and 
5. Verification module. 

Initial Adjustmen-
t Module ~ Settings ~ 

Module 

This paper assumes a large system with definite num­
ber of goals. Figure 2 illustrates the properties of the task 
of ITA. The general configuration of the triangle indicates 
the coarse-to-fine property of the problem while the small 
squares inside the triangle portray the decomposability of 
the problem to smaller individual concepts. Depending on 
the granularity or resolution intended by the system, the 
reached and verified concept could be a single or several 
concepts. In fact, the ITA problem is methodological in 
nature (Avery, T. and G. Berlin, 1985) and modular in 
concept. The modularity of the problem is explained next 
as a set and subset concept. 

2.2 ITA Decomposability Property 

Using set theory, let the general concept of the above task 
be denoted by Gg , and let the first level of the decompos­
able concepts be a set Ll where 

Ll = {Gll , G12 , ... G1n } such that: 
Gg :::) Gll , G12 , .... , GIn' 

Then, it is necessary and sufficient for the ITA problem to 
be decomposable if it has: 
1. Gg i- 0. 
2. Gg :::) Gll , GI2 .... ' GIn 
3. Gij n Gik = {0}, where j i- k 
Now, let Gll , G12 , ... GIn 

Verificatio Hypo-Transition n& 
~ theses ~ Module Conclusion Module Module 

Figure 1: ITA Modularity as Processed by Human Experts in the Real World. 

Many experts do not realize that they reason in this 
sequence. For instance, experts note the fourth and fifth 
phases but, often, not the first and third phases. This 
chain of logical analysis is very important to be realized 
by the Knowledge Engineer (KE) due to its essentiality in 
qualifying certain state-space search strategies over others 
for the ITA problem. 

In the real world, an expert is sitting in his office and 
ready to provide interpretations and consultations for his 
customers. This is what an expert expects. However, 
he cannot predict what a customer's image will contain. 
That is, the expert might work on tens of stereo pairs, 
each containing different features, terrain, and character­
istics. Analogously, an AI system for the ITA task should 
be ready for any type of tasks for ITA, but within the 
prespecified limits of the system. For instance, if the sys­
tem was developed to identify thirty landforms on earth, 
it should be able to define any of these landforms at any 
time without an a priori expectation of which landform it 
will face with the next customer. This ability calls for an 
engineer to develop a systematic or methodological way of 
ITA that is general enough to cover the whole spectrum 
of the task. 
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which are denoted previously by L 1 , presents the coarsest 
level of the concept Gg ; then 

Ll EGg. 

000000 

Large Triangle Portrays The Coarse-to-Fine Concept 

Small Squares Indicate Individual Concepts 

Figure 2: ITA With Coarse-to-Fine Concept and 

Decompotion Property. 



By the same analogy, Ll may be further decomposed. 
Let 

L2 = {C21,C22, ... ,C2d 
be the second level of the concept that is filtered from the 
first level. In a similar fashion: 

Cg ~ C21 , C22 , ... , C2k · 
Then the set relations 

L2 ELI; and 
C21 n C22 ... n C2k = {0}, where L2 =1= 0 

are held. 

The same decomposition continues for the concept un­
til Lg is reached, where Lg denotes the resolution level 
which contains the goal node: 

L3 = {C31,C32, ... ,C3d 

Lg = {CgI, Cg2 , ... , Cgs } 
where 9 > r > ... > 1. Then 

Lg E Lg- 1 E ... ELI. 

I Cg I 

a a a B 

I Qualification Function (Q1) I 

Iv 

a 

a EJ B a 
I Qualification Function I 

Figure 3: The Concept of Sets and Subsets of The ITA 

Problem. 

Denote the level qualification factors that an expert 
uses to move from one level to the other by Ql, Q2, ... , Qg . 
These qualification factors are the criteria based on which 
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subconcepts are derived until the solution is reached. Fig­
ure 3 illustrates the filtration concept and the notion of 
sets and subsets of the ITA problem. (The reader is re­
ferred to Childress, R., 1974; Kaplansky, 1., 1972; Eisen­
berg, M., 1971; Reed, G., 1977 for more information about 
set theory.) 

The explained sets and subsets portray the solution 
path and should not be confused with the general prob­
lem configuration, which may appear quite opposite in a 
diagram. To illustrate the difference, Figure 4 combines 
the whole concept. More intention should be paid to the 
setting of the large triangle as opposed to the settings of 
the interior, smaller, triangles. Conceptually, these two 
triangles are similar in that both have coarser knowledge 
up and finer knowledge down. The difference, however, is 
in the final outcome of each. The larger triangle presents 
the whole spectrum of the problem. That is, all landforms 
existing on earth that the system may identify are listed at 
the bottom of the large triangle. In contrast, the smaller 
triangle presents only those landforms that are of interest 
and appear on a particular image. Therefore, smaller tri­
angles represent a solution while the larger one represents 
the whole problem (domain). The individual events rep­
resented by the small triangles are eventually summed up 
to constitute the whole population. 

2.3 Search Flow of The Human Model 

Based on the previously mentioned properties and theo­
ries of the nature of ITA problem, it is fair to say that 
in the real world the absolute initial states of the prob­
lem are unknown at the first few moments. This general 
statement immediately implies unknown goals at the ini­
tial state space. For instance, an analyst is told to define 
all existing landforms in a stereoscopic pair of images. Be­
fore looking at the pair, the analyst has no way of knowing 
where to start and what to expect. This momentary vague­
ness is soon adjusted according to the adjustment module 
based on certain criteria in the very few starting steps of 
the interpretation processes. 

This part of the problem (an unknown hypotheses) 
calls for an immediate forward tracking of the solution 
by the expert system (initial setting module). Likewise, 
the human expert is unconsciously conducting a forward 
search or tracking at his initial settings and scanning of 
the problem. As soon as the human expert handles the 
images, looks at them, and reads them, he narrows the 
problem and defines his starting points or what is called 
initial state-space. As mentioned previously, control strat­
egy should be in a close compliance with human search 
strategies. Accordingly, at this level of discussion, the first 
conclusion is that the initial search control strategy should 
be developed to work in a forward-tracking (knowledge­
driven) manner. 

The next step of search control strategy conducted by 
human experts is to do further careful analysis based on 
well established criteria to prune all irrelevant concepts 
from the whole space, sticking only the candidate concepts. 
This middle level of the search can be either forward- or 
backward-tracking. The tracking method depends on how 
the expert attacks the problem to decompose it into sub­
concepts. If he has already developed a certain broad hy-



pothesis about several subconcepts, then he is doing a tem-
, porary backward tracking of this hypothesis in his mind. 

But if the problem is still too vague, a forward tracking 
may continue because the expert has not yet developed 
any goal to verify (transition phase module). 

The third and last step achieved by the expert is to 
rank the possible and most promising concepts (landforms) 
in the image and to start to verify them one (or several) 
at a time (hypotheses module). This implies that, at this 
level of image interpretation process, a very determined 
hypothesis (goal or concept) is clearly defined in the ex­
pert's mind. Until the goal is verified or disapproved, the 
whole process is a goal-oriented (or a goal-driven) process. 
The AI system must follow the human way of attacking 
the problem and act accordingly. From here on, the rest 
of the process of the control strategy should use backward 
tracking for the knowledge search since some goals are de­
veloped (verification module). Since there is no absolute 
forward tracking in AI, it is important to realize that there 
is a dummy or transitional parameter so that the data­
driven search can progress (Chandrasekaran, B., 1992). 

viewpoint of image interpretation using terrain analysis. 
This paper concerns the third component. 

The basic characteristics that any good control strat­
egy should possess are the ability to maintain a dynamic 
character (motion) of the state-space and the ability to 
provide a systematic behavior to the whole space (Rich, 
E. and K. Knight, 1991; Chandrasekaran, B., 1990). The 
mobility property of any strategy provides the avenues to 
eventually reach the solutions to the problem under con­
sideration. On the other hand, the systematic property of 
any strategy prevents the undesirable repeated exploration 
of useless state-space several times before the solution is 
reached (Patten, J., 1991). . 

The content and the organization of the system's knowl­
edge base are influenced by the selected control strategy. 
The control strategy of a system becomes very obvious in 
tasks that use operators to modify the problem concepts in 
a multiple task-domain situation. The ITA problem needs 
several operator sequences at every level so that the next 
move is conducted intelligently. This property of the prob-

Resolution Level Increases 

Level 
B 

Level 
E 

Figure 4: Problem Domain Setting vs. Solution Path Settings. 

2.4 Qualifications and Implementations 
of Strategies 

Like any other AI problem-solving system, the ITA expert 
system consists of three main components: a database, a 
set of operators, and a control strategy. Current research 
is carefully investigating all three components from the 
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lem exposes two different types of search theories. The 
first theory is called blind search theory or control strat­
egy (e.g., breadth-first and depth-first search) (Barr, A., 
et al. 1982; Rich, E. and K. Knight, 1991). The second 
theory is called heuristic search theory or strategy (e.g. 
ordered state-space or best-first search) . These theories 
are illustrated by presenting three examples so that proper 
conclusions about the suitability of these theories to the 



ITA problem are reached. 

2.5 Blind State-Space Search Strategies 

2.5.1 Breadth-First and Depth-First Search Strate­
gies 

Breadth-first search strategy expands the concepts (nodes) 
according to their proximity to the starting node or con­
cept. Arcs can be used as a measure for node proximity. 
Accordingly, all possible operator sequence of length n is 
considered before any sequence of length (n + 1). In the 
ITA problem this strategy declines in value as the system's 
scalability increases. If careful planning is not practiced 
before developing the expert system, this problem is dan­
gerous for it may not be very obvious at the initial stages 
of developing the system. 

As it should be understood, expert systems are devel­
oped incrementally (Jackson, P., 1986). That is, system 
development passes through three phases. The first phase 
is the prototype development of the system. Most often 
this phase can use the breadth-first search strategy, which 
can be of great advantage. The next phase is a transi­
tion phase. In this phase, the attributes, parameters, and 
number of landforms to be treated increase. At this phase 
the system's slowness becomes evident. The third phase of 
the development is the hybrid system phase. In this phase 
the problem spectrum is almost completely covered by the 
system. 

Since the number of landforms on earth and their pa­
rameters and attributes are so large, a very big knowl­
edge base can be foreseen. This fact makes the breadth­
first search strategy unacceptable since its blind behavior 
causes time and space limitations. The limitations can 
be visualized by looking at the exponentially expanding 
nodes in Figure 4. In breadth-first search, if node 23 is an 
assumed hypothesis in the tree, then this hypothesis can­
not be reached until the system searches the whole tree, 
starting at node 1 on level A through the last hypothesis 
just before hypothesis 23 on level E (For basic algorithms 
for this strategy the reader is referred to the references at 
the end of this paper). 

The depth-first search strategy operates as another 
blind state-space strategy. This search strategy gives the 
starting node 0 depth, and from there all other nodes are 
numbered so that the depth of any node is 1 more than the 
depth of its predecessor. Depth-first strategy expands the 
most recently generated node by following a single path 
through the state space downward from the starting node 
until a goal is reached or a dead end is found. Figure 4 
illustrates how depth-first search works. Notice here that 
the nodes 1,2,5,9, and 14 are treated in the first processed 
single path, but in the next alternate path operations start 
at node 9. The process continues until hypothesis at node 
23 (an assumed goal) is reached. Thus, after the initial set­
tings of node 2 and its branches are explored, the search 
starts back at node 3 and explores initial settings of its 
branches. 

Conceptually, these methods of state-space search are 
incompatible with human expert methods conducted for 
an ITA task in the real world. It should be realized, how-
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ever, that this ,conclusion is based on pure blind search 
methods in which no criteria are developed to qualify the 
promising nodes to be explored amongst the list in every 
level in the state-space problem. When a set of qualifying 
criteria is developed for these methods, a new and more 
sophisticated state-space search and control strategies are 
obtained, which are closer to the human way of reasoning 
about the 

2.5.2 Heuristic State-Space Search for ITA 

Heuristic control strategy assesses various operator sequences 
and signalizes or instantiates the most promising sequence 
(Barr, A. and E. Feigenbaum, 1982). In fact, heuristic 
search strategies use certain criteria to direct the search 
in the state-space of the problem. Based on these crite­
ria and based on the nature of the ITA problem, heuristic 
state-space search and a combination of forward and back­
ward chain reasoning constitute a set of control strategies 
that meet the conceptual aspects of the ITA problem; and, 
therefore, this set is implemented by this study for this 
problem. This type of search is justified by many facts, 
some of which were described previously and some of which 
are discussed next. 

Representing the knowledge in the expert system ac­
cording to the logic of the human expert is a prerequisite 
in developing control and search strategies for the system. 
This prerequisite stems from two essential factors. First, 
the expert has to understand the KE's real attempts to 
model the expert's own expertise and, as a result, the ex­
pert gains the confidence to test and evaluate the system's 
success based on his knowledge and familiarity with the 
main workings of the system. In relation to this issue, 
the end user's acceptance of and confidence in the sys­
tem are more likely to be attained if the knowledge rep­
resentation and control strategy schemes approximate the 
expert's knowledge. 

Second, the expert's strategy of representing and con­
trolling the knowledge is a whole package of expertise that 
any AI system should maintain. In a heuristic search the 
ingredients of the ITA problem are the initial state, the 
operators, and the goal states (LO.G). The main objec­
tive of the KE is to model the control strategy and logic 
that the human expert uses when connecting the initial 
state-space with the goal state-space through appropriate 
operators. 

As can be concluded by now, the blind search of a 
state-space expands a very large number of nodes before 
a solution is reached. The reason for that is the arbitrary 
behavior of expanding the nodes without controlling the 
search mobility according to the properties of the problem 
at hand. As a part of the control strategy the triple (LO.G) 
is assumed to be established. The rest of the control strat­
egy is, then, to develop heuristic information about the 
ITA problem and to implement a search method which 
uses this information to effectively search the given space. 



3 ORDERED ESTABLISH AND REFI­
NE SEARCH ALGORITHM (OERSA)i 

We develop a heuristic state-space search algorithm that 
well fit the ITA problem. This hybrid search strategy com­
bines the properties of the well known establish and refine 
and ordered state-space heuristic search strategies. It is 
necessary to have a general understanding about what type 
of heuristic information can be used in searching the space 
of the ITA problem. This information includes heuristic 
strategy constraints and can be categorized according to 
its function into two different categories. The first category 
is a set of information that qualifies the most promising 
node to be expanded and which evaluates node successors 
to generate the best node amongst them. This type of 
information is used by the heuristic search strategies to 
eliminate the blind expansions that characterize breadth­
first and depth-first strategies. The second category is a 
set of information that eliminates irrelevant nodes from 
the whole space. 

The implemented algorithm represents the general idea 
of the heuristic search methods as compared to the blind 
search methods. The general concept of the OERSA is 
that it works globally on the total set of nodes that are not 
yet expanded, and it evaluates them to expand the most 
promising successors or nodes only. The evaluation func­
tion Q is a problem dependent. In the ITA problem, the 
qualification function Q should be the similarity measure 
between the current space state node and the goal node 
instead of the distance or difficulty qualification measure 
that is used by some other problems. In some instances 
the Q function in the ITA problem is developed based on 
elimination criteria, where refinement is conducted for the 
,established nodes. Figure 5 represents small portion of 
the rules and screens of the expert system which contains 
OERSA. 
The OERSA, implemented by this study, is as follows: 

• Start the adjustment module by applying global qual­
ification function Q to the ITA space in order to es­
tablish the initial state node S. 

• Prepare a list in the initial state node S and evaluate 
the individual elements in the list according to the 
Q function (an evaluation function). 

• If the node S is empty, then report a failure as an 
indication that no solution exists. 

• If S is not empty, then according to the Q function 
establish the most promising concept (concept i) in 
the node. 

• Call a recognition agent and test concept i, if the 
concept is a goal node, then report the proper con­
clusions and exit with success. 

• If concept i is not a goal node, then establish succes­
sors of concept i and refine each successor node, say 
concept k, using the Q function: 

1. If concept k is new, then list it among the other 
unexpended concepts and give it a pointer to its 
parent node to trace its path toward the goal 
concept if found later. 
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2. If concept k is not new, then call the proba­
bility function, compare ,,'s current value with 
the previously calculated one, and make proper 
substitutions. Refinement based on certainty 
factors are in effect at this stage of the infer­
ence process. 

• Return to step number 2 and continue. 

4 DISCUSSION 

The human strategy for interpreting landforms is system­
atic and of clear conceptual blocks. That is, the process 
is coarse-to-fine, in general, and is knowledge-driven until 
the initial space states are set; then the rest of the pro­
cess is a goal-driven verification of the hypothesis. An AI 
system for the same purpose must closely follow the same 
general guide lines. It is not impossible, however, to follow 
other strategies that could solve the problem but will be 
characterized by two properties: 

• The AI system will not act according to the human 
methods. This will lead to two conceptual conse­
quences: 

1. The problem may be regarded as not an AI 
problem, which contradicts the reality of the 
ITA problem; 

2. The system will lack the property adhering in 
the word "EXPERT"; or 

• The efficiency of the system, both time-wise and 
storage-wise, may be questionable, especially for large 
tasks. 

It has been explained how each type of control strategy 
behaves as viewed from an image-interpretation per'spec­
tive. In reality, both breadth-first and depth-first search 
methods are characterized by the mobility property that 
a good strategy maintains. The drawbacks of both, how­
ever, are listed here from an AI viewpoint and from the 
ITA viewpoint as well: 

1. Incompatible with the human logic of solving the 
ITA problem. 

2. Depth-first method may be trapped in the state­
space and goes through an endless loop. 

3. The breadth-first search is characterized by time and 
space inefficiencies. 

4. In both methods, the obtained solutions may be not 
the optimal solution. 

These drawbacks are not necessarily disadvantages for some 
other types of AI problems. For instance, in some other 
situations the following are advantages of these methods: 

l. Depth-first search is fast. 

2. Breadth-first search guarantees a solution if one ex­
ists. 



3. Breadth-first search finds the shortest path to a so­
lution. 

On the other hand, for our particular AI problem, the 
heuristic search is preferable, for this type of control strat­
egy is applicable to the ITA problem. This is quite true 
since the number of concepts (concepts of landform iden­
tification and evaluation) to be treated is very large and 
since methods for pruning irrelevant nodes are essential 
for avoiding the probable "combinatorial explosion" prop­
erty (exponentially growing nodes). The least important 
advantage of this search method is the ability to combine 
the advantages of depth-first search (exploring a minimum 
number of branches) and the advantages of breadth-first 
search (avoiding being trapped by a dead end). Most im­
portant are the compliance of the heuristic search meth­
ods with human reasoning and the intelligence that these 
methods can provide if proper knowledge about the prob-
lem domain is uired. 

($AND 
(SAME FRAME WEATHER HUMID» 

(DO-ALL 
(CONCLUDE FRAME REFERENCE "REFERENCE-MORPHOLOGY" TALLY 100) 
(CONCLUDE FRAME MHll 0 TALLY 100) 
(CONCLUDE FRAME MH22 0 TALLY 100) 
(CONCLUDE FRAME MH33 0 TALLY 100) 
(CONCLUDE FRAME MH44 0 TALLY 100) 
(CONCLUDE FRAME MH47 0 TALLY 100) 
(CONCLUDE FRAME MH54 0 TALLY 100) 
(CONCLUDE FRAME MH65 0 TALLY 100) 
(CONCLUDE FRAME MH76 0 TALLY 100) 
(CONCLUDE FRAME MH811 0 TALLY 100) 
(CONCLUDE FRAME MH99 0 TALLY 100) 
(CONCLUDE FRAME MH1010 0 TALLY 100) 
(CONCLUDE FRAME MH1l8 0 TALLY 100) 
(CONCLUDE FRAME REFERENCE-M-H "Referencing Morphology 
template Is Accomplished Correctly" TALLY 100» 

($AND 
(SAME FRAME MORPHOLOGY-H MASSIVE-STEEP-SLOPE-HILLS» 

(DO-ALL 
(SET-VALUE TEST 38.5) 
(CONCLUDE FRAME MHll 

(VALUE-OF TEST) TALLY 100) 
(CONCLUDE FRAME CELLS-H 

(VALUE-OF TEST) TALLY 100» 

($AND 
(SAME FRAME DRAINAGE-H INTERNAL» 

(DO-ALL 
(SET-VALUE TEST 2 3 • 4) 
(CONCLUDE FRAME CELLS-H 

(VALUE-OF TEST) TALLY 100) 
(CONCLUDE FRAME DH63 

(VALUE-OF TEST) TALLY 100» 

($AND 
(KNOWN FRAME MORPHOLOGY-H) 
(KNOWN FRAME DRAINAGE-H) 
(KNOWN FRAME PHOTOGRAPHIC-TONE-H) 
(KNOWN FRAME LAND-USE-AND-LAND-COVER-H) 
(KNOWN FRAME EROSION-H» 

(DO-ALL 
(CONCLUDE FRAME SS-H 

(PLUS 
(PLUS 

(PLUS 
(PLUS 

(VALl FRAME SS-HMA) 
(VALl FRAME SS-HDA» 

(VALl FRAME SS-HTA» 
(VALl FRAME SS-HLA» 

(VALl FRAME SS-HGA» TALLY 100» 

Figure 5: An Expert System Contains The OERSA. 
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5 CONCLUSIONS 

Any control strategy must maintain the motion and sys­
tematic property for the state-space strategy. For the ITA 
problem a hybrid control strategy that fits the conceptual 
aspects of the problem and maintains the AI aspects is 
recommended and implemented by this study. The pro­
posed control strategy consists of a heuristic state-space 
search strategy along with a combination of forward and 
backward chaining. 

A close look at the brute-force state-space search strate­
gies (called blind strategies in AI), heuristic state-space 
search strategies, and theories of chaining can provide great 
clues to the success of expert systems in the ITA prob­
lem. Since this paper concentrates on the conceptual as­
pects of the problem, there was no attempt to provide 
recommendations for particular algorithms. However, on 
the conceptual level we recommend heuristic state-space 
strategies for the ITA problem. For search algorithms, 
there are many different ways of selecting from a variety 
of algorithms for a heuristic state-space search. Popular 
algorithms, such as generate-and-test, hill climbing, best­
first search, problem reduction, and means-ends analysis, 
can be investigated for the ITA tasks. 
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