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ABSTRACT 

The last decennia, the leaf area index (LAI) has been a very important crop characteristic used 
in studies concerning growth, modelling and yield forecasting of agricultural crops. At the moment, 
interest is shifting towards the fraction of absorbed photosynthetically active radiation (APAR) , 
which is a key parameter in the photosynthetic process of the plant. In this study, a sensi ti vi ty 
analysis was performed for both crop parameters and external factors, using the SAIL canopy 
reflectance model and the PROSPECT leaf reflectance model, for studying the possibilities of 
using vegetation indices (VI) for estimating APAR. 

Results from this theoretical study show that a linear relationship may be assumed between WDVI 
(Weighted Difference VI) or NDVI (Normalized Difference VI) and APAR as an approximation. External 
factors (soil background, ratio diffuse/total irradiation, solar zenith angle) do not have a 
large influence on the relationship between APAR and the WDVI (which is related to greenness 
and perpendicular VI). Moreover, leaf parameters (such as leaf chlorophyll content, leaf mesophyll 
structure and hot spot size-parameter) also have quite a small influence for green leaves, as 
concluded from simulations with the combined PROSPECT-SAIL model. The main crop parameter influencing 
the relationship between WDVI and APAR is the leaf angle distribution (LAD). So, for differing 
LADs differing regression functions must be used. Although the relationship between APAR and 
NDVI is slightly less influenced by LAD and solar angle, important disturbing factors are the 
soil background and the leaf chlorophyll content. 
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1. INTRODUCTION 

Remote sensing techniques have the potential to provide 
information about agricultural crops quantitatively, 
instantaneously and, above all, non-destructively. In 
the past decades, knowledge about optical remote sensing 
techniques and their application to fields such as 
agriculture has improved considerably (cf. Asrar, 1989; 
Steven & Clark, 1990). The possibilities of applying 
remote sensing in agricul ture have been demonstrated, 
e.g. with regard to the estimation of crop characteris­
tics such as soil cover and leaf area index (LAI). 

Much recent research has been aimed at determining 
combinations of reflectances (vegetation indices, VI) 
in order to correct for the effect of disturbing factors 
(particularly soil background) on the relationship 
between crop reflectance and crop characteristics, such 
as the LAI. Huete (1989) has reviewed the main VIs. 
He made a distinction between ratio-based VIs, utilizing 
red and NIR canopy reflectances or radiances, and linear 
combinations (of the response in several spectral 
bands). Of the ratio-based VI the Normalized Difference 
VI (NDVI = (NIR-red)/(NIR+red» is the most common one. 
Clevers (1986) showed that the NDVI did not satisfy 
for estimating LAI under western European agricul tural 
condi tions (with high LAI values). Therefore, Clevers 
(1988, 1989) has described a simplified, semi-empirical, 
reflectance model for estimating LAI of a green canopy 
(CLAIR model). In this approach, he applied the so­
called "Weighted Difference VI" (WDVI, see section 2.1). 
Clevers showed that this index is comparable with the 
greenness index of Kauth & Thomas (1976) for the two­
dimensional case and with the perpendicular VI of 
Richardson & Wiegand (1977). The latter VIs are so­
called orthogonal-based indices (Huete, 1989). 

In the current study attention was focused at the 
estimation of the absorbed photosynthetically active 
radiation (APAR). The APAR is particularly interesting 
from an agronomical point of view. This applies 
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particularly to the possible combination of remote 
sensing with crop growth models. Incoming photosyntheti­
cally active radiation (PAR) is partly reflected by 
the top layer of the canopy. The complementary fraction 
is potentially available for absorption by the canopy. 
The product of the amount of incoming photosynthetically 
active radiation (PAR) and the absorptance yields the 
amount of absorbed photosynthetically active radiation 
(APAR). The rate of CO 2 assimilation (photosynthesis) 
is calculated from the APAR and the photosynthesis-light 
response of individual leaves. The assimilated CO2 is 
then reduced to carbohydrates which can be used for 
crop growth. 

Estimating APAR requires both incident PAR and the 
fraction of PAR absorbed by the vegetation. The latter 
can be estimated from a remote sensing platform. The 
present study was focused at the estimation of the 
fraction APAR (canopy absorptance) by some vegetation 
index. Emphasis was on the WDVI and the NDVI. A 
theoretical sensitivity analysis has been performed 
by studying the relationship between WDVI (and NDVI) 
and the fraction APAR, which might be influenced by 
parameters incorporated in canopy and leaf reflectance 
models. Such parameters may be other varying canopy 
characteristics or external factors. The final objective 
of this research was to be able to give findings about 
which variables have a clear impact on the estimation 
of APAR from a remote sensing platform and what the 
accuracy should be with which such variables have to 
be ascertained. 

2. MATERIALS AND METHOD 

2.1 Simplified Reflectance Model for Estimating LAI 

Clevers (1988, 1989) has described a simplified, semi­
empirical, reflectance model for estimating LAI of a 
green canopy. In this model it is assumed that the soil 
type is given and soil moisture content is the only 
varying property of the soil during the growing season. 



For estimating LAI a so-called Weighted Difference VI 
(WDVI) is ascertained as a weighted difference between 
the measured NIR and red reflectances, assuming that 
the ratio between NIR and red reflectances of bare soil 
is constant, independent of soil moisture content (which 
assumption is valid for many soil types). 

The simplified reflectance model derived by Clevers 
consists out of two steps. First, the WDVI is calculated 
as: 

WDVI (1) 

with rir total measured NIR reflectance 
rr total measured red reflectance 

and C rs,ir/rs,r (2) 

rs,ir NIR reflectance of the soil 
rs,r red reflectance of the soil. 

Secondly, the relationship between WDVI and LAI is 
modelled as: 

LAI = -1/0 . In(l - WDVI/WDVI~) (3) 

with 0 as a function of extinction and scattering 
coefficients and WDVI~ as the asymptotically limiting 
value for the WDVI. They have to be estimated 
empirically from a training set (Clevers, 1988). 

Within the above approach emphasis was on estimating 
LAI. As described in the introduction we are now 
focusing at estimating the fraction APAR. The 
relationship between LAI and fraction APAR has been 
described by e.g. Guyot & Baret (1991) (cf. also Asrar 
et al., 1984; Sellers, 1985): 

LAI = -ljKpar . In(l - APAR/AP~) (4) 

with Kpar as the extinction coefficient for photosynthe­
tically active radiation (PAR: 400-700 nm), which 
depends on canopy geometry and irradiance conditions, 
and AP~ as the asymptotically limiting value for APAR 
(~ 0.94 according to Guyot & Baret). 

We may note a clear analogy between Eqs. (3) and (4). 
However, 0 is particularly related to the NIR region 
where scattering is the dominating process (measured 
in terms of WDVI) and Kpar is related to the visible 
region where absorption dominates (measured in terms 
of APAR). Although 0 and Kpar are related to different 
spectral regions, they will be influenced by parameters 
such as leaf angle distribution (LAD) or solar angle 
in a similar way. If we could assume 0 and Kpar to be 
equal as an approximation, we would obtain a linear 
relationship between WDVI and APAR: 

APAR = WDVI * APAR~jWDVI~ (5) 

Finally, the fraction APAR can be related to the total 
photosynthetic activity of a canopy by integrating the 
APAR over time. This is what is done in crop growth 
models. Input in these models often are estimates for 
parameters such as the canopy scattering coefficient 
for visible light, the extinction coefficient for PAR, 
the LAD and the total daily irradiation. The daily APAR 
may also be calculated by directly multiplying the 
fraction APAR and the daily PAR irradiation. Since it 
was found in literature that the NDVI may also be 
suitable for estimating APAR (e.g. Asrar et al., 1984, 
found a linear relationship between the NDVI and APAR) , 
a comparison between WDVI and NDVI performance was made 
with respect to APAR estimation. 

2.2 SAIL Model 

The one-layer SAIL model (Verhoef, 1984) simulates 
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canopy reflectance as a function of canopy variables 
(leaf reflectance and transmittance, LAI and LAD), soil 
reflectance, ratio diffuse/direct irradiation and 
solar/view geometry (solar zenith angle, zenith view 
angle and sun-view azimuth angle). Recently, the SAIL 
model has been extended wi th the hot spot effect (Looyen 
et al., 1991). LAD functions used with the SAIL model 
are given by Verhoef & Bunnik (1981) and Bunnik (1978). 

The SAIL canopy reflectance model may also be used for 
simulating the fraction APAR instead of the canopy 
reflectance. The total canopy absorptance may be 
calculated as one (or 100%) minus the hemispherical 
canopy reflectance (what is lost above the canopy) and 
the soil absorptance (what is lost underneath the 
canopy). The calculations for the one-layer SAIL version 
will be explained using the terminology and formulae 
of Verhoef (1985). 

APAR can be defined from the sum of the net fluxes 
incident on the canopy at the top and the bottom of 
the layer. With the following flux types: 

Es(t), Es(b) = direct solar fluxes at top and bottom, 
E_(t), E_(b) = diffuse downward fluxes at top and bottom, 
E+(t), E+(b) = diffuse upward fluxes at top and bottom, 

the flux absorbed by the canopy layer is given by: 

For a Lambertian soil with reflectance rs 

(7) 

The interactions with the canopy layer can be described 
by 

TssEs(t) 
TSdEs(t) + TddE-(t) + PddE+(b) 
P SdEs ( t ) + P ddE- ( t ) + T ddE+ ( b ) 

(8) 
(9) 

(10) 

Here the P and T parameters are reflectances and 
transmittances for the canopy layer. The first 
subscripts refer to the type of incident flux, i.e. 
s for solar flux and d for diffuse (upward or downward) 
flux, and the second subscript refers to the type of 
reflected or transmitted flux. Among others, these P 
and T parameters are given as output quanti ties of the 
SAIL model. 

Eqs. (7), (8) and (9) can be used to solve for the total 
downward flux at the bottom of the canopy. This yields: 

Then, application of (7) in Eq. (10) gives 

PSdEs(t) + PddE-(t) + 
T ddrs [ (T ss+T sd)Es ( t )+T ddE-( t) lI( 1- Pddr s) 

Now, A may be rewritten as 

A = Es(t) + E_(t) - PSdEs(t) - PddE-(t) + 
(-Tddrs+rs-l) [( Tss+Tsd)Es(t)+TddK(t) lI(l-Pddrs) . (11) 

This result can be split up in contributions due to 
direct solar flux and due to diffuse downward flux as 
follows. With 

Eq. (11) can be written as 

(14) 



Finally, the fraction APAR may be calculated as (using 
leaf properties for the PAR spectral region): 

This equation has been implemented into the SAIL code. 

2.3 PROSPECT Model 

The PROSPECT model, as developed by Jacquemoud & Baret 
(1990), is a radiative transfer model for individual 
leaves. It is based on the generalized "plate model" 
of Allen et al. (1969, 1970), which considers a compact 
theoretical plant leaf as a transparent plate wi th rough 
plane parallel surfaces. An actual leaf is assumed to 
be composed of a pile of N homogeneous compact layers 
separated by N-l air spaces. The thickness of the air 
spaces that separate the layers was taken as infinitesi­
mal. The compact leaf (N = 1) has no intercellular air 
spaces or the intercellular air spaces of the mesophyll 
have been infiltrated with water. The discrete approach 
can be extended to a continuous one where N need not 
be an integer. N ranging between 1.0 and 1. 5 corresponds 
to monocotyledonous plant species with a compact 
mesophyll structure. Dicotyledonous species, characteri­
zed by a sponge parenchyma wi th many air cavi ties, have 
N values between 1.5 and 2.5. N values greater than 
2.5 represent senescent leaves with a disorganized 
internal structure. PROSPECT allows to compute the 400-
2500 nrn reflectance and transmi ttance spectra of very 
different leaves using only three input variables: leaf 
mesophyll structure parameter N, chlorophyll content 
and water content. All three are independent of the 
selected wavelength. 

Since the output of the PROSPECT model equals part of 
the input for the SAIL model, a combined PROSPECT-SAIL 
model was made. This combined model may simulate the 
spectral bidirectional reflectance and the fraction 
APAR of a canopy as a function of the leaf properties 
used as input for the PROSPECT model and as a function 
of canopy parameters and external factors used as input 
for the SAIL model. 

2.4 Procedure Sensitivity Analysis 

To investigate the sensitivity of the relationship 
between VI and APAR to parameters incorporated in 
reflectance models, two methods could be applied: 
Method 1: 
Here we assume the model parameters known and we 
simulate forward towards simulated VI and simulated 
APAR with the combined PROSPECT-SAIL model. Then this 
VI can be indirectly compared with this simulated APAR 
by using some (semi-)empirical relationship between 
VI and estimated APAR. The difference between simulated 
and estimated APAR yields a measure for the error in 
APAR estimation. 
Method 2: 
An alternative, but more elaborate way is that we assume 
that only measurements (canopy reflectances or VIs) 
are available. By using inversion techniques, a set 
of model parameter combinations could be generated 
matching the measurements (usually the inversion process 
does not lead to one unique parameter combination!) 
using the combined PROSPECT-SAIL model. Due to model 
linearization and optimization (local or global extrema) 
in the n-dimensional parameter space, the inversion 
process will yield an error. Subsequently, the APAR 
can be predicted with the combined PROSPECT-SAIL model. 
This will not result into one unique APAR as in method 
1. Estimating APAR from the measurements using the 
empirical relationship as in method 1 and then compare 
it with the APAR obtained from the inversion, leads 
to a sensitivity measure for APAR. 

Method 2 is a more independent and systematic way of 
studying the sensitivity of APAR estimation. No 
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uniqueness in parameter combinations also indicates 
the possible existence of different relationships 
between VI and APAR. However, since the objective of 
the present study was to elaborate which parameters 
do influence this relationship and to what extent, and 
since the inversion process is a computational tedious 
procedure, method 1 was applied in this study. 

Starting point for the model simulations was some sort 
of "standard crop" measured under" standard irradiation 
and viewing conditions" (table 1). Subsequently, the 
effect of changing one input parameter at a time is 
studied. 

Table 1: Definition of a standard crop under standard 
conditions. 

chlorophyll content 
N parameter 
water content 
LAD 
size-parameter 
soil reflectance 
ratio diffuse/direct irr. 
solar zenith angle 
viewing angle 

34.24 j.tg.cm-2 leaf areal 
1.8320t 
0.0137 cmt 

spherical 
o 
20% (red and NIR) 
o 
45° 
0° 

tExample of a dicotyledonous plant as given by 
Jacquemoud & Baret (1990). 

The influence of plant water content (equivalent water 
thickness) needed not to be studied, because it has 
no influence on NIR and red reflectance (and thus on 
WDVI and NDVI) as defined by the PROSPECT model. 

From an agronomical point of view a determination of 
the percentage APAR with an accuracy within 10% in 
absolute units is assumed acceptable (or 0.1 as a 
fraction). The sensitivity study should result into 
statements concerning the accuracy with which the input 
parameters studied must be known in order to reach the 
accuracy of 10% APAR. It is realized that inaccuracies 
in a number of input parameters may add up to a large 
inaccuracy of APAR estimation, but the ultimate goal 
is to define which parameters are important as 
disturbing factors and in what range of values (both 
of the input parameter as well as of the estimated 
APAR). Then further research activities should focus 
on these factors. LAI itself is not regarded as a 
disturbing factor on the relationship between VI and 
APAR. The latter two are both a function of LAI (see 
section 2, Eqs. (3) and (4» and both will be simulated 
as a function of LAI. 

Figs. 1 and 2' suggest a linear relationship between 
VI and APAR for a given LAD (cf. also the considerations 
at the end of section 2.1 and Asrar, 1989). The results 
of the sensi ti vi ty analysis in section 3 confirm this 
linearity. In the rest of this paper a linear 
relationship between VI and APAR will be assumed as 
an approximation. 

The sensitivity analysis is performed in the following 
way: 
1) Assume a known linear relationship between VI and 

APAR that runs through the origin (for a given 
LAD) : 

APAR = a * VI (16) 

with a known. This linear relationship should be 
determined for the standard crop. 

2) Vary one input parameter by some value (e.g. a 
maximal deviation from the value used for the 
standard crop). 

3) For the resulting crop under the resulting 
circumstances the VI is simulated for a given LAI 
and the APAR is estimated by applying Eq. (16). 



This estimated APAR is assumed to be in the range 
0% - 100%. 

4) For the resulting crop under the resulting 
circumstances the APAR is also simulated for the 
same LAI as used under step 3. This yields the 
real APAR. 

5) By taking the absolute difference of the result 
of 3) and 4), an estimation of the absolute 
accuracy of APAR estimation (dAPAR) is obtained 
if one of the input parameters deviates from the 
standard crop. 

Subsequently, this is repeated for LAI values in the 
range between 0 and 8, in order to see whether the 
influence of a deviation in some input parameter varies 
with the LAI value (or better with the APAR). 

For ascertaining the WDVI and the NDVI by means of the 
combined PROSPECT- SAIL model, the red reflectance was 
simulated at 670 nm and the NIR reflectance at 870 nm. 
APAR was simulated by simulating the average leaf 
reflectances and transmittances for the 400-700 nm 
region using PROSPECT and subsequently using these as 
input into SAIL. This yielded an enormous reduction 
in computing time. 

3. RESULTS AND DISCUSSION 

The combined PROSPECT-SAIL model was used for this 
sensi ti vi ty analysis. Since no significant interactions 
between the various variables were found in affecting 
the relationship between VI and APAR, each variable 
will be discussed separately. A more extensive 
presentation is given by Clevers et al. (1992). 

3.1 Influence of Soil Background 

The influence of soil reflectance on the relationship 
between WDVI and APAR is illustrated in Fig. 1 for the 
standard crop. This figure shows that there existed 
a small effect of soil background on the APAR for such 
a large range in soil reflectances. The WDVI concept 
was developed in order to correct largely for the 
influence of soil background. 

Fig. 2 illustrates the influence of soil background 
on the relationship between NDVI and APAR. Results are 
much worse than for the WDVI; so mainly results for 
the WDVI will be elucidated in detail in this paper. 

Assuming a linear relationship between WDVI and APAR 
running through the origin, the standard crop (with 
a soil reflectance of 20% and a spherical LAD) yielded 
a regression coefficient of 2.39 (R2 = 0.97) for the 
data in Fig. 1 (using LAI values up to 4.0; the latter 
yielding nearly maximal APAR values). One also obtained 
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Figure 1: Influence of soil reflectance (RSL) on the 
relationship between WDVI and APAR for the standard 
crop. 
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Figure 2: Influence of soil reflectance (RSL) on the 
relationship between NDVI and APAR for the standard 
crop. 
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Figure 3: Absolute errors in APAR estimation by means 
of the WDVI, caused by deviations from Eq. (17) due 
to soil reflectance (RSL) variations for the standard 
crop. 

this regression coefficient by incorporating all four 
soil curves of Fig. 1 into the linear regression 
analysis (R2=0.94). So: 

APAR( %) = 2.39 * WDVI (spherical LAD). (17) 

By also assuming a linear relationship between NDVI 
and APAR running through the origin, the standard crop 
(with a soil reflectance of 20% and a spherical LAD) 
yielded a regression coefficient of 100.0 (R2 = 0.99) 
for the data in Fig. 2 (using LAI values up to 4.0). 
Incorporating more soil curves of Fig. 2 into the 
regression analysis dramatically increased the deviati­
ons. 

The sensitivity of the regression of APAR on WDVI for 
errors in soil reflectance can be quantified by applying 
the procedure described in section 2.4. The resul ting 
maximal absolute errors in APAR estimation for the 
standard crop are illustrated in Fig. 3. This figure 
shows that errors for a soil reflectance of 20% were 
not zero. This was caused by the fact that the 
relationship between WDVI and APAR as illustrated in 
Fig. 1 was not perfectly linear. The errors in Fig. 
3 for the 20% curve were caused by this non-linearity. 
Fig. 3 shows that the curve for 30% soil reflectance 
followed the regression line of the 20% curve even 
better (yielding smaller errors). With decreasing soil 
reflectance errors increased (larger deviations from 
20% soil reflectance) up to about 80% APAR. Maximal 
errors for the 10% curve were just within the maximal 
allowable deviation of 10% in terms of APAR. The 0% 



soil reflectance curve (a theoretical case) yielded 
errors larger than 10% for APAR values between 35% and 
70%. As expected, maximal errors were much larger when 
using the NDVI, particularly for low soil reflectances 
(results not shown). 

3.2 Influence of Solar Angle 

The solar zenith angle affects the simulated APAR and 
WDVI in a similar way. The influence of solar zenith 
angle on the relationship between WDVI and APAR is 
illustrated in Fig. 4. This figure confirms the small 
influence of solar zenith angle in qualitative terms. 
Largest errors will occur for large zenith angles. 

The maximal absolute errors in APAR estimation for the 
standard crop caused by an inaccuracy in solar zenith 
angle are illustrated in Fig. 5. With increasing solar 
zenith angle errors increased (except for large APAR). 
Maximal errors for all curves were within the maximal 
allowable deviation of 10% in terms of APAR, except 
for the 80 degrees zenith angle curve. When using the 
NDVI for estimating APAR, a maximal error of 8% APAR 
was found. So, it performed slightly better than the 
WDVI. 

100 

80 

~ 60 '--" 

0:::: « 
!l 40 « 

00000 TIS 20° 
00000 TIS 40° 

20 t,t,t,t,t,TIS 60° 
~TIS 80° 

0 
0 10 20 30 40 50 60 

WDVI (%) 
Figure 4: Influence of solar zenith angle (TTS) on the 
relationship between WDVI and APAR for the standard 
crop. 
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Figure 5: Absolute errors in APAR estimation by means 
of the WDVI, caused by deviations from Eq. (17) due 
to solar zenith angle (TTS) variations for the standard 
crop. 

3.3 Influence of Diffuse/Total Irradiation 

The influence of the ratio diffuse/total irradiation 
on the relationship between VI (WDVI or NDVI) and APAR 
was only minor. Figures are not presented within this 
paper. 
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3.4 Influence of Leaf Inclination Angle 

In order to simplify the analysis, in this section LADs 
consisting of one leaf angle were used. The LAD is the 
main disturbing parameter on the relationship between 
WDVI and LAI (Clevers & Verhoef, 1990). In particular, 
significant differences in asymptotic value of the WDVI 
occurred as a function of LAD. The WDVI was not 
developed for correcting for differences in leaf 
inclination angle. Clevers (1989) described a practical 
procedure for applying the WDVI, whereby a training 
set is used for establishing the regression function 
of LAI on WDVI. The influence of LAD on the relationship 
between WDVI and APAR is illustrated in Fig. 6. As 
expected, the influence was huge, which is primarily 
caused by the influence of LAD on WDVI. 

The maximal absolute errors in APAR estimation by the 
WDVI for the standard crop caused by an inaccuracy in 
LAD are illustrated in Fig. 7. This figure shows that 
errors in APAR estimation due to errors in LAD may be 
very large. Errors larger that 10% APAR occurred for 
a planophile LAD (at 25 degrees between 50% and 90% 
APAR and at 45 degrees between 80% and 90% APAR). An 
erectophile LAD (65 degrees) just reached the 10% APAR 
error around 50-70% APAR. 

The influence of LAD on the relationship between NDVI 
and APAR is illustrated in Fig. 8. The curves in Fig. 
8 all run through the origin and at large NDVI values 
they all run towards nearly 100% APAR. However, a huge 
influence of LAD occurred at intermediate values. In 
terms of APAR estimation by means of the NDVI, the 
results for the standard crop yielded a maximal error 
that just reached the 10% level (Fig. 9). 
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Figure 6: Influence of LAD on the relationship between 
WDVI and APAR for the standard crop. 
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Figure 7: Absolute errors in APAR estimation by means 
of the WDVI, caused by deviations from Eq. (17) due 
to variations in the LAD for the standard crop. 
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Figure 9: Absolute errors in APAR estimation by means 
of the NDVI, due to variations in the LAD for the 
standard crop. 

3.5 Influence of Hot Spot Size-parameter 

The hot spot size-parameter was introduced into the 
SAIL model for improving simulations of bidirectional 
reflectance distributions. It has no meaning for the 
fraction APAR. However, in Looyen et al. (1991) it was 
shown from simulations that outside the actual hot spot, 
the hot spot size-parameter still may have a considera­
ble influence on crop reflectance. A larger size­
parameter leads to higher reflectances and a broadening 
of the zone in which the hot spot effect is significant. 

Clevers & Verhoef (1990) have shown that the hot spot 
size-parameter does have a small effect on the WDVI. 
Since errors in APAR estimation due to an inaccuracy 
of the hot spot size-parameter were all small, results 
are not illustrated in this paper. 

3.6 Influence of Chlorophyll Content 

The effect of chlorophyll content on APAR was found 
to be very similar to its effect on WDVI (Clevers, 
1992). The influence of chlorophyll content on the 
relationship between WDVI and APAR is illustrated in 
Fig. 10. From a chlorophyll content of 2 p,g. cm-2 onwards 
there was hardly any influence. 

The maximal absolute errors in APAR estimation for the 
standard crop caused by an inaccuracy in the chlorophyll 
content are illustrated in Fig. 11. As expected, largest 
errors were obtained for low chlorophyll contents 
(smaller than 10 p,g. cm-2

, which are yellow leaves). 
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For green leaves (chlorophyll content of 20-80 p,g.cm-2
) 

errors were all small. Errors larger than 10% APAR 
occurred for the 10 p,g.cm-2 curve between 85-90% APAR. 
Lower chlorophyll concentrations do not reach such high 
values for APAR resulting also into smaller errors. 

It was found that the chlorophyll content had a very 
significant influence on the relationship between NDVI 
and APAR (Fig. 12), especially for chlorophyll contents 
below about 20 p,g. cm-2

• This resul ted into considerable 
errors when using the NDVI for APAR estimation. 
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Figure 10: Influence of chlorophyll content (Ca+b ) on 
the relationship between WDVI and APAR for the standard 
crop. 
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Figure 11: Absolute errors in APAR estimation by means 
of the WDVI, caused by deviations from Eq. (17) due 
to leaf chlorophyll content (Ca+b ) variation for the 
standard crop. 
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the relationship between NDVI and APAR for the standard 
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3.7 Influence of Mesophy11 Structure 

The leaf mesophy11 structure (N parameter) had hardly 
any influence on APAR and only a small influence on 
WDVI (C1evers, 1992). This was explained by the negative 
correlation between the reflectance and transmittance 
of a single leaf in the NIR. 

The influence of mesophy11 structure on the relationship 
between WDVI and APAR is illustrated in Fig. 13. From 
this figure it may be concluded in qualitative terms 
that the mesophyl1 structure had only a minor influence. 

The maximal absolute errors in APAR estimation for the 
standard crop due to an inaccuracy in the N parameter 
are illustrated in Fig. 14. Errors appeared to be quite 
small. Largest errors occurred at about 90% APAR (large 
LAI, see remarks above). For an N parameter of 1.0 
(monocotyledonous plants) the maximal error reached 
a value just over 10% APAR. Results for the NDVI were 
quite similar to the ones for the WDVI. 
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Figure 13: Influence of N parameter on the relationship 
between WDVI and APAR for the standard crop. 
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Figure 14: Absolute errors in APAR estimation by means 
of the WDVI, caused by deviations from Eq. (17) due 
to N parameter variation for the standard crop. 

4. CONCLUS IONS 

Concerning the estimation of the APAR by means of the 
WDVI and NDVI, the sensitivity analysis with the 
combined PROSPECT-SAIL model resulted into the following 
conclusions (conclusions in this report are restricted 
by the validity of these models): 

- A linear relationship between VI and APAR may be 
applied as an approximation for estimating APAR from 
the WDVI or NDVI. 
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- The influence of soil background on the relationship 
between WDVI and APAR was only minor. Absolute errors 
in APAR estimate were lower than 10% APAR in absolute 
units, except for the theoretical case of a soil with 
0% reflectance. So, the WDVI does what it is developed 
for: it corrects satisfactory for the influence of soil 
background, not only for estimating LAI, but also for 
estimating APAR. Soil background had a significant 
influence on the relationship between NDVI and APAR. 

- The sensitivity of the relationship between VI and 
APAR for errors in solar zenith angle was quite small, 
especially for practical circumstances in western 
Europe. By assuming a solar zenith angle of 45°, the 
maximum error was about 10% APAR. 

- The influence of the ratio diffuse/total irradiation 
on the relationship between VI and APAR was only minor. 

- As expected, the leaf inclination angle had a huge 
influence on the relationship between WDVI and APAR. 
This influence cannot be neglected and is mainly caused 
by its influence on simulated WDVI. Its influence on 
the fraction APAR was small near zero APAR (all curves 
run towards 0% APAR) and at large APAR (all curves run 
towards about 96% APAR). The influence of the LAD on 
the relationship between NDVI and APAR was less (maximal 
error of 10% APAR). 

- The influence of the hot spot size-parameter on the 
relationship between VI and APAR for nadir viewing was 
not very large. 

- The influence of the leaf chlorophyll content on the 
relationship between WDVI and APAR was small from a 
chlorophyll content of 2 fJ-g. cm-2 onwards. A very large 
influence only occurred for albino leaves (lacking 
chlorophyll). Errors larger than 10% APAR occur for 
the 10 fJ-g. cm-2 curve between 85-90% APAR. Lower 
chlorophyll concentrations do not reach such high values 
for APAR resulting also into smaller errors. It was 
noticeable, that the chlorophyll content had a 
significant influence on the relationship between NDVI 
and APAR. 

- The leaf mesophyll structure had only a minor 
influence on the relationship between WDVI and APAR. 
Largest errors occur at about 90% APAR (large LAI). 
For an N parameter of 1.0 (monocotyledonous plants) 
the maximal error reaches a value just over 10% APAR. 
The NDVI yielded similar resu~ts as the WDVI. 

5. PRACTICAL IMPLICATIONS 

Of the external parameters, the influence of soil 
background on the measured signal at a remote sensing 
platform could be corrected for satisfactorily by means 
of the WDVI approach (CLAIR model). The performance 
of the NDVI in this respect was much worse. The solar 
zenith angle had only a small influence on the 
relationship between WDVI and APAR for nadir viewing. 
Often optical remote sensing measurements are gathered 
during the growing season of agricultural crops at about 
the same time during the day, which results into a 
limited range in solar angles. As a result, one might 
assume an average solar zenith angle at all dates. The 
influence of the ratio diffuse/total (or diffuse/direct) 
irradiation appeared to be only minor. Moreover, optical 
remote sensing is mostly carried out at sunny days with 
low (and not very varying) diffuse/total ratios. From 
the simulations in this report, we may conclude that 
the external factors will not pose a large problem on 
the regression of APAR on WDVI. 

With the crop parameters, other than the LAI, this is 
qui te different. Particularly, the LAD had a significant 
influence on the relationship between WDVI and APAR 
(in this respect the NDVI has some advantages). The 



influence of leaf properties such as chlorophyll content 
and mesophyll structure appeared to be quite small for 
green leaves. The main problem often is that actual 
information on the LAD is lacking. Clevers & Verhoef 
(1990) already pointed at the possibility of a constant 
or a gradually changing LAD (related to a changing LAI) 
during part of the growing season; with cereals, e.g. , 
a distinction between vegetative and generative 
(yellowing) stage should be made. In such situations, 
the effects are caught in the empirical parameters a 
and WDVI~ of the CLAIR model. Clevers (1989) described 
a practical procedure for applying the WDVI, whereby 
a training set is used for establishing the regression 
function of LAI on WDVI for a given crop. A similar 
approach could be applied for establishing the 
regression function of APAR on WDVI. 

Another solution for correcting for LAD may be found 
in acquiring information on both APAR (or LAI) and LAD 
by performing measurements at two viewing angles. Such 
measurements may, e. g., be obtained by using the dual 
look concept with the CAESAR scanner. In Looyen et al. 
(1991) the possibilities of acquiring information on 
both LAI and LAD by means of the dual look concept were 
illustrated. Goel & Deering (1985) confirmed that two 
view zenith angles for fixed solar zenith and view 
azimuth angles are enough to allow estimation of LAI 
and LAD by the infrared reflectances. Such an approach 
should be tested more thoroughly. 
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