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ABSTRACT. High spectral resolution images (AVIRIS) providing detailed information on 
the surface mineralogy have been used to evaluate a new indicator kriging based 
classification technique. This technique directly uses spectral information derived from 
A VIRIS data instead of information from training areas studied in the field. A small study 
area of an imaging spectrometer data set covering the Cuprite mining district was selected 
for its known occurrences of both kaolinite and alunite. Three "conventional" classification 
methods were applied as well as the new indicator kriging based technique and results were 
evaluated using shape characteristics of the classes and by comparison with local field 
geologic information. Indicator kriging performed better than the conventional methods. 
Furthermore, the new indicator kriging based method provides information on the reliability 
of the classification which is lacking with the conventional methods. 
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INTRODUCTION 

Remote sensing of earth's surface from aircraft and from 
spacecraft provides information not easily acquired by 
surface observations. Until recently, the main limitations of 
remote sensing were that no subsurface information could be 
obtained and that surface information lacked specification. 
Conventional scanners (e.g. Landsat MSS and TM, and 
SPOT) acquire information in a few separate spectral bands 
of various widths, thus filtering to a large extent the 
reflectance characteristics of the surface (Goetz & Rowan, 
1981). Therefore, new scanner types were developed with 
high spectral resolution yielding new image processing 
techniques to cope with the increased amount of data. The 
use of indicator kriging as classification routine is discussed 
in this paper using high spectral resolution imagery although 
the technique is also valid for conventional scanner data. 

IMAGING SPECTROMETRY 

The use of high spectral resolution remotely sensed imagery 
for mineralogic mapping was first demonstrated in spectral 
laboratory studies (e.g. Hunt, 1977). In 1981, airborne 
spectrometer data were acquired using a sensor developed by 
the GER corporation for one-dimensional profiling along a 
flight line. The first imaging device was the Airborne 
Imaging Spectrometer (AIS), developed at the Jet Propulsion 
Laboratory. This instrument acquired data in 128 spectral 
bands in the range of 1200-2400 nm with a field-of-view of 
3.7 degrees (Vane & Goetz, 1985). In 1987 NASA began 
data acquisition with an improved version of AIS called the 
Airborne Visible/Infrared Imaging Spectrometer (A VIRIS; 
see Macenka & Chrisp, 1987). This scanner makes possible 
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the simultaneous collection of images in 224 contiguous 
bands resulting in a complete reflectance spectrum for each 
20*20 m. picture element (pixel) in the 400 to 2500nm 
region with a sampling interval of 10 nm (Goetz et aI., 
1985; Vane & Goetz, 1988; Porter & Enmark, 1987). The 
field-of-view of the A VIRIS scanner is 30 degrees resulting 
in a ground field-of-view of 10.5 km. The signal-to-noise 
ratio is 100: I at 700nm and 50: 1 at 2200nm. The value of 
this scanner lies in its ability to acquire a complete 
reflectance spectrum for each pixel. Many surface materials 
have diagnostic absorption features that are 20-40nm in 
width (Hunt, 1979). Therefore, spectral imaging systems 
which have 10nm wide bands can produce data with 
sufficient resolution for resolving these features and 
subsequent direct identification of those materials (Goetz, 
1991). On the contrary, Landsat scanners, which have band 
widths between J 00 and 200nm cannot resolve these spectral 
features. Analysis of high spectral resolution imagery for 
mineral identification involves three steps: (1) the pre­
processing of the data to convert raw spectra into reflectance 
spectra corrected for atmospheric influences, (2) extraction 
of absorption features characterizing surface materials of 
interest, and (3) evaluating for each pixel whether the 
absorption feature is present or absent at the wavelength 
(Okada et al., 1991). 
This paper shows the potential use of indicator kriging based 
techniques for image classification (the third processing step 
mentioned above) of remotely sensed imagery in general and 
high spectral resolution data in particular. AVIRIS data from 
the Cuprite mining district were used to detect occurrences 
of kaolinite and alunite based on their spectral 
characteristics. Four bands defining the key absorption 
features from these minerals are subsequently used as input 



for classification and the results are compared with those 
derived from an indicator kriging based technique. To 
evaluate the results, synthetic measurements of shape are 
used and classification results are compared with field 
evidence deduced from local geological studies. 

GEOLOGY AND SPECTRAL CHARACTERISTICS OF 
SURFACE MATERIALS 

The area of study, the Cuprite mining district (figure 1) is 
situated in western Nevada and contains both hydrothermally 
altered and unaltered rocks which are well exposed and 
nearly devoid of vegetation. The mining district straddles the 
US highway 95 approximately 30 km south of Goldfield. 
Exposures of hydrothermally altered rocks about 12 km2 in 
extent which include minor sulphur, silica, and precious 
metals which have been exploited (Albers & Stewart, 1972). 
The eastern half of the district, which is discussed here, is an 
area of extensive hydrothermal alteration within a sequence 
of rhyolitic welded ash flow and air fall tuffs. The altered 
rocks are divided into three mappable units: silicified rocks, 
opalized rocks, and argillized rocks. Silicified rocks, 
containing abundant hydrothermal quartz, form a large 
irregular patch extending from the middle to the south end 
of the area. Opalized rocks contain abundant opal and as 
much as 30 % alunite and kaolinite. Locally, an interval of 
soft, poorly exposed material mapped as argillized rock 
separates fresh rock from opalized rock. In the argillized 
rocks, plagioclase is altered to kaolinite, and glass is altered 
to opal and varying amounts of montmorrillonite and 
kaolinite. The general geology of the Cuprite mining district 
is treated in more detail in Abrams et al. (1977). The 
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A VIRIS data used in this study were acquired on 29 
september 1989 at 11:25 AM (local time). 
Evaluating a 224 channel spectrum of 5x5 pixel area of the 
Stonewall Playa (denoted by A in figure 1) shows that the 
major features are the broad atmospheric water bands 
centered at 1400 and 1900nm and the solar irradiance curve 
which exhibits a rapid falloff toward long wavelengths. A 
shortcut to modelling the atmospheric and insolation effects 
can be made if the data are normalized to an area in the 
image having little or no topographic relief and uniform, 
known spectral reflectance characteristics. The flat-field area 
chosen for the correction should have a high albedo to avoid 
introducing noise and sacrificing the signal-to-noise ratio. 
This normalization procedure, known as the flat-field­
correction, has been applied to the data by dividing the 
original DN values by the corresponding value in the 
Stonewall Playa spectrum. Spectral features in the surface 
material become more apparent in the normalized spectrum 
because of the removal of systematic effects makes it 
possible to display the data at their full radiometric 
resolution. Other correction techniques are the log-residual 
correction (Green & Graig, 1985) and a correction technique 
using the LOWTRAN 7 (Kneizys et aI., 1988) atmospheric 
model (see Rast et al., 1991 for a complete review). 
The potential use of Imaging Spectrometry for mapping of 
hydrothermal alteration minerals in the Cuprite mining 
district has been shown by many workers (e.g. Goetz et al., 
1985; Vane, 1987). 
Figure 2 shows normalized spectra from areas B, C and D in 
figure 1. Area B is known as Kaolinite Hill for its extensive 
and well exposed deposit of the clay mineral kaolinite. The 
wavelength positions of the double OH absorption features 

figure 1: AV1RIS image of the Cuprite mining district (right) in band centered at 1014nm (A = Stonewall Playa; 
B=Kaolinite Hill; C=Alunite occurrence; D=Buddingtonite occurrence). The box indicates the area selected for 
classification. The map (left) is a display of the alteration zones after Ashley (J 977). 
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at 2160 and 2200nm which is seen in laboratory spectra 
(Hunt & Salisbury, 1970; VanderMarel & Beutelspacher, 
1976) and resolved in the AVIRIS spectrum, was the main 
criterium used for positive identification. Furthermore, the 
characteristic asymmetric shape of the spectrum towards long 
wavelengths is well seen. Other clay minerals which are 
difficult to distinguish from kaolinite visually are alunite and 
buddingtonite. Alunite occurs widely throughout the Cuprite 
mining area while buddingtonite has been observed at few 
locations at the site. The occurrence of buddingtonite was 
discovered through the analysis of AIS spectra (Goetz & 
Srivastava, 1985). An absorption feature at 2020nm and a 
vibrational absorption feature due to NH4 (Krohn & Altaner, 
1987) at 2110nm are the main diagnostic features 
distinguishing buddingtonite spectrally from other clay 
minerals. Alunite is characterized by absorption features at 
2160 and 2200nm due to OH frequency stretching (Hunt et 

·al., 1971) and a nearly symmetrical shape in the 2080-
2280nm region. 
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Figure 2: Mineral spectra for Kaolinite (top) , Alunite 
(middle) and Buddingtonite (bottom) derived from AVIRIS 
imagery using a 5x5 pixel area at locations indicated by B, 
C, and D respectively in figure 1. Dotted curves represent 
laboratory spectra of the investigated minerals. Arrows 
enclose the ranges used for indicator classification in the 
four bands used. 
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METHODS FOR SUPERVISED CLASSIFICATION 

After establishing mineral spectra, the next processing step 
is to apply classification rules to the image data to 
investigate spatial distribution of mineral occurrences. As 
discussed previously, conventional classification methods 
selecting bands on the shoulders and centre of absorption 
features will be used and compared to an indicator kriging 
based method selecting the same bands. 

Conventional Classification Methods 

The processing strategy for information extraction from 
multiple datasets usually involves image classification. 
Classification techniques are based on computer assisted 
recognition of surface materials from their characteristic 
spectral properties in various wavelength bands. During 
investigation of imagery and during field check, areas known 
to represent the outcrop of a mineral or rock of interest are 
being selected as training areas. For each band which is used 
in the classification the spectral range for each class is 
estimated from the training pixels. Combining the 
information for various bands results in an N-dimensional 
histogram (the feature space) from which all classes can be 
separated according to their spectral response. The next step 
is to give the computer a set of rules to classify all pixels in 
an image by comparing their spectral response in various 
bands with those of the training pixels. The simplest method 
of doing so is box classification by which the two 
dimensional feature spaces are divided into rectangular 
boxes. The boundaries of the boxes representing the spectral 
ranges of DN values for the two bands within known area of 
the surface categories. Box classification compares all 
unknown pixels with the boxes; if they fall within one box 
they are assigned to the relevant class, if they fall in no box 
they remain unclassified. An important limitation of this 
method is that natural earth materials generally plot as 
ellipsoids in N-dimensional feature spaces, and boxes are 
only a crude representation of ellipses (figure 3b). 
A more sophisticated set of rules is provided by the K­
nearest neighbour analysis which employs the statistics of the 
data from training areas. This method, first identifies the 
mean for each class used and secondly assigns the unknown 
pixel to the class with the closest mean. A userdefined search 
radius is adopted; if this distance is exceeded the pixel will 
remain unclassified (figure 3a). 
A refinement to this method is the maximum likelihood 
classification method which also uses the variance of the 
training samples. If DN values within the training areas are 
assumed to be normal distributed for each band, histograms 
can be considered to be bell-shaped. Dependent on the 
variance, the further a DN is from the mean, the less the 
probability is that it represents the class. In a two 
dimensional feature space, DN values from training pixels 
form a elliptical cloud which can be contoured to show the 
decrease of the probability from the mean value. The plot of 
DN for any unknown pixel can then be assessed in this 
probabilistic context by calculating the likelihood of the pixel 
belonging to each of the predefined classes. The unknown 
pixel is assigned to the class for which the likelihood 
(=probability) is maximized (figure 3c). The main 
disadvantages of these conventional classification methods is 
that training pixels have to be selected which is often a 
tedious task. Furthermore, none of the methods discussed 
gives information on the reliability of the classification 
results and only maximum likelihood classification defines 
the probability of a pixel belonging to a class. 



Analysis of high spectral resolution imagery uses spectral 
bands on the shoulders and centre of an absorption feature 
to deduce maps Jor the wavelength position, width, depth, 
symmetry, and Hull quotient of absorption features to 
investigate the spatial distribution of surface mineralogy 
(figure 3d). 

The Indicator Kriging Method 

The new classification method, the indicator kriging based 
method, allows for multispectral classification without prior 
knowledge of ground truth. Instead of using training pixels 
to define spectral ranges of classes of interest, this method 
directly employs the mineral spectra derived using A VIRIS 
or other type of scanner data. 
Indicator kriging is one of the non-parametric geostatistical 
techniques which discretizes the histogram into several 
classes and carries out interpolation separately for every class 
(Fytas et al., 1989; Dagbert, 1990). The principal difference 
between ordinary kriging and indicator kriging is that 
indicator kriging works on (0, I) transformed data according 
to several threshold levels. Therefore the final result of 
indicator kriging is a set of probabilities that a block exceeds 
a specific set of cut-off values. In general, five steps are 
required to carry out estimation using indicator kriging 
(Fytas et al., 1989): (1) construct histograms for input data, 
(2) choose threshold values from the histograms, (3) 
transform data values into 0,1 values (1 if they are below the 
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Figure 3: Schematic representation of different classification 
methods: (A) K-Nearest Neighbour analysis, (B) Box 
classification, (C) Maximum likelihood decision rules, (D) 
absorption parameters used for the analysis of A VIRIS data, 
and (E) indicator kriging definition of bands and upper and 
lower limits (see text for explanation). 
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threshold and 0 if they are above the threshold), (4) develop 
variogram models for all cut-offs, and (5) perform kriging on 
the 0,1 transformed data repeating the process for every 
threshold to get as an end product a cumulative probability. 
Indicator kriging is based on the theory of regionalized 
variables (Matheron, 1971) in which a variable is distributed 
in space. Local estimation tries to find the best estimator of 
the mean value of a regionalized variable over a limited 
domain whereas global estimation considers larger distances 
thus, sometimes, engulfing various heterogeneous 
mineralizations (Joumel & Huijbregts, 1978, p. 304). 
Assuming that the regionalized variable has values Zi = Z(xJ 
which represent the value at point Xi' the expectation (E) for 
a second order stationary variable is then given by: 

E {Z (X) }=m (1 ) 

where m is a constant which is generally 
unknown. The variance of the difference between the value 
of the variable at two points Z(x) and Z(x + h) a distance h 
apart is described using the variogram (2 y(h)) and 
semi-variogram (y(h)) or the covariance function (C(h» 
given by: 

E{[Z(x+h) - Z(x) ]2}=2 Y (h) (2) 

and 

E[Z(x+h) Z(x) ] - m2=C(h) (3 ) 

respectively. A kriged estimate Zk * is a weighted linear 
combination of n values of the regionalized variable given 
by: 

(4 ) 

where Zj is the observed value of the variable at sample 
point i and -\ is the weight attached to the value at sample 
point i. Weights are calculated so that the average error of 
the estimate over a great number of similar estimations (i.e. 
observed value minus estimated value) is minimised and to 
ensure that the estimate is unbiased. The last criterion is 
satisfied by requiring the weights to sum up to one, resulting 
in: 

which yields: 

n 
1: -\=m=E{Zv} 
i=l 

E{Zv - Zk*}=O 

(5 ) 

(6 ) 

The first criterion, minimising the error variance E{Zy - Zk*} 
can be expanded as follows: 

E{[Zv - Zk*]2}=E{ZV2} - 2E{Zv Zk*} + E{Zk*2} (7) 

Following David (1977, p. 243) and Joumel & Huijbregts 
(1978, p. 306) the minimum estimation variance or kriging 
variance can be written as: 

n 
cr2k=C(V,V) + ~ - 1: Ai C(Vi,V) 

i=l 
(8 ) 



or expressed in tenns of the semi-variance function y(h) as: 

cr2
k

=E. A. y(v.,V) + Jl - y(V,V) (9) 
~ ~ ~ 

where C(vj, V) represents the covariance between any point 
in the block, V, and sample Vi ('(Vi'V) is the corresponding 
semi-variance), C(V,V) is the average covariance of samples 
within block area V (with the corresponding semi-variance 
value Y(V,V», and J.1. is the Lagrange multiplier added to 
ensure a statistically optimal result. 

In practice, the computations of block values is carried out 
through a discrete summation. The area of the block is 
represented by a group of points regularly disposed over the 
area. Precision increases with the number of points within 
the area. In practice geostatistical analysis starts by 
calculating a semivariogram describing the spatial variability 
of the variable to be estimated. This semivariogram is used 
to derive the weights assigned to each sample point during 
the kriging interpolation resulting in an estimate and error 
variance for all block areas. 
Classification using the indicator kriging approach starts by 
defining the spectral bands that contain "key infonnation" on 
the spectral response of a certain ground class of interest. 
This step is done by extracting absorption features 
characterizing a mineral of interest from field spectral 
analysis or laboratory measurements. Bands on the shoulders 
of the absorption feature and bands on the centre of the 
feature are subsequently used for further analysis. This first 
step requires infonnation on the spectral characteristics of 
certain minerals and not necessary on field geology which is 
obligatory for proper selection of training areas. The next 
step is to define the spectral range in each band by means of 
setting upper and lower limits for the DN values in those 
spectral bands. Figure 3e shows the diagnostic absorption 
feature for kaolinite which can be mapped using two bands 
defining the shoulders and one band marking the centre of 
the feature. Upper and lower limits in each bands are 
indicated by the area enclosed in between the arrows. For all 
of these limits the data are being transfonned into 0 and I 
values; 1 if they are below the threshold and 0 if they are 
above the threshold. The result are two binary (0,1) maps 
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• kaolinite 
• alunite 

for each spectral band used in the classification; one for the 
'upper limit and one for the lower limit. Subsequently, the 
binary maps are interpolated using the ordinary kriging 
procedure described above. By interpolating the 0,1 map for 
the upper limit we gain a map representing the probability 
that the value of a block lies below the indicated upper limit. 
The interpolation for the lower limit results in a map 
representing the probability that the block value lies above 
the lower limit. Combining these we calculate the probability 
that the block DN value is higher than the lower limit and 
smaller than the upper limit (e.g. the probability of a block 
having a spectral DN value in between the predefined range 
corresponding to the spectral response of the mineral of 
interest. The size of the blocks to produce output can be 
defined by the user and is not necessary of the same size as 
the input pixel size. This provides a means of extrapolating 
to areas smaller than the pixel size. Repeating this procedure 
for all key bands results in a set of probability maps (one for 
each band) which can be integrated by calculating the joint 
probability which is a measure for the likeliness that a pixel 
belongs to a certain class. This image is used as input for the 
classification. By setting tolerances on the minimum 
probability acquired for each class, pixels can be classified 
with a predefined accuracy. 

RESULTS 

Different classification methods have been applied to a small 
.(50x20 pixels) area located in the northwestern part of the 
image (figure 1). This area was chosen for its known 
occurrence of both kaolinite and alunite rich deposits. 
Therefore classification focused on these two minerals using 
bands centered at 2060, 2160, 2260 and 2300nm. From the 
mineral spectra derived from A VIRIS it can be shown that 
both alunite and kaolinite have an absorption feature at 
2160nm which differs significantly in depth. Furthennore, 
the shape of the spectra over the spectral range 2060-
2300nm is different (figure 2). 
Classification results of conventional methods are shown in 
figure 4. Training samples were chosen at sites indicated by 
Kaolinite Hill and Alunite in figure 1. For the indicator 

Figure 4: Classification results/or ground classes Kaolinite and Alunite using (A) Box classification, (B) K-Nearest 
neighbour analysis, (C) maximum likelihood decision rules, (D) indicator kriging using probability values greater 
than 0.5, and (E) indicator kriging using probability values greater than O. 
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classification method the threshold values used in all four 
bands are shown in figure 2. Indicator variograms are well 
defined at low cutoffs but tend to become conspicuous at 
high cutoffs. These variograms are a measure for the 
variability in the dataset and are used in the interpolation 
procedure to derive the kriging weights. Indicator kriging 
derived probability maps for alunite and kaolinite are shown 
in figure 5. These have been transformed into classified 
images by using all probabilities greater than zero (referred 
to as the indicator maximum result) and by using all 
probabilities greater than 0.5 (referred to as the indicator 
minimum results). The classified images for the indicator 
kriging based method are shown in figure 4. 

kaolinite alunite 

• < 0.2 
• 0.2- 0.6 
0IGl > 0.6 

Figure 5: Probability that a pixel belongs to class kaolinite 
(left) or alunite (right). By setting tolerances on the 
probability values, pixels can be classified. From these 
images, the final classification was deduced by setting 
tolerances on the probability (e.g. P > 0.5 for indicator 
minimum and P > Of or indicator maximum classification). 

Equations 8 and 9 reveal an important feature of kriging: the 
estimation variances depend on the semivariogram and, 
through it, on the configuration of observation points in 
relation to the block to be estimated and on the distances 
among them. They are independent of the observed values 
themselves, thus if a semivariogram is known then kriging 
variances for any sampling scheme can be determined prior 
to sampling (McBratney et al., 1981). By means of a similar 
procedure an assessment of the reliability of the output 
results for different block sizes can be made. Provided the 
variogram is known and the spacing and size of the input 
data (in this case 20x20 m pixels) for each output block 

geometry the maximum error can be calculated (McBratney 
et al., 1981). The maximum error for each upper and lower 
limits in each band has been evaluated for the class alunite 
(table I). Input data are on 20x20 m regular grid whereas 
output has been produced on grids of lxI, lOx 10, 20x20, 
40x40, 80x80, and 100xlOO m. An exponential decrease of 
error is clearly seen with increasing blocksize although the 
difference for block sizes exceeding the pixel size is 
insignificant. For this study, output was produced on a 
lOxlO m. grid yielding a average error of 18%. 

EVALUATION OF RESULTS 

The classification results have been evaluated by comparing 
the classified images with the field information from Albers 
& Stewart (1972) and Ashley (1977) and secondly by 
quantifying the visual aspects of the classes using synthetic 
measurements of shape. Tables lIa and lib show the results 
of the comparison between classification and field evidence 
for the distribution of kaolinite and alunite, respectively. 
Four different combinations can occur (table lIa+b): (1) in 
both the classified image and the field geologic map the 
pixel is classified as mineral (column 1), (2) only in the field 
the mineral occurrence is detected not in the classified image 
(column 2), (3) only in the classified image the pixel is 
assigned to the class representing the mineral 
to occur although no evidence was found in the field 
geologic map (column 3), and (4) the pixel in the image and 
in the field geologic map were not considered to belong to 
the class of the mineral investigated. The classification 
results for kaolinite are in general poor although the 
indicator kriging technique adopting a probability of zero 
scores relatively good with respect to the conventional 
classification methods. For the class alunite surprisingly 
good results were obtained by the maximum likelihood 
decision rules and by the indicator kriging technique using 
all probability values greater than zero. 
Instead of counting correctly classified pixels, one can also 
look at the visual aspects of classified images to evaluate 
classification results. Some aspects with respect to this are 
the roundness of the clusters and the number of holes in 
them. Mathematical morphology (Serra, 1982) quantifies the 
geometrical structure and texture of an object by introducing 
the concept of the structuring element. This element interacts 
with the object under study, modifying its shape and 
reducing it to a caricature which is more expressive than the 
initial phenomenon. Basic transformations of binary patterns 
are erosion, opening and closing (Fabbri, 1984) from which 

table I: Kriging standard deviation for estimation of class 
alunite in four bands used. 

band 2060nm band 2160nm band 2260nm band 2300nm 
block 
size lower upper lower upper lower upper lower upper 

1 x 1 0.15 0.10 0.24 0.25 0.22 0.16 0.23 0.24 
10 x 10 0.09 0.06 0.15 0.20 0.10 0.10 0.20 0.17 
20 x 20 0.07 0.06 0.10 0.20 0.10 0.10 0.10 0.10 
40 x 40 0.06 0.05 0.10 0.10 0.09 0.08 0.09 0.10 
80 x 80 0.06 0.04 0.08 0.09 0.06 0.06 0.09 0.09 

100 x 100 0.06 0.04 0.01 0.02 0.05 0.01 0.08 0.07 
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table Ila: Kaolinite occurrence versus predicted. 

both in field in image none 

indicator kriging 
min: p > 0.5 5.7% 16.3% 0.4% 77.6% 
max: p > 0.0 18.2% 3.8% 7.2% 70.8% 

box classification 3.1% 18.9% 7.6% 70.4% 
K-nearest neighbour 0.9% 21.1% 4.2% 73.8% 
Maximum likelihood 

table Ilb: Alunite occurrence versus predicted. 

both in field in image none 

indicator kriging 
min: p > 0.5 11. 3% 13.3% 0.1% 75.3% 
max: p > 0.0 21. 0% 3.4% 2.2% 73.4% 

box classification 12.3% 12.2% 1.1% 74.4% 
K-nearest neighbour 12.8% 11. 7% 0.9% 74.6% 
Maximum likelihood 20.1% 4.5% 4.8% 70.6% 

synthetic measurements of shape are derived quantifying the 
visual aspects of a class (Fabbri et al., 1990). In this study, 
measurements used were (1) the index of morphologic 
compactness, (2) the connectivity number, and (3) the 
boundary density (Durand & Flouzat, 1985). 
The index of morphologic compactness (IC(c» is an 
indication for the roundness of particles in a class. The index 
varies from 0 to 1 where ICec) = 1 is a class composed of 
entities with rounded edges and IC(c) =0 is a class composed 
of entities with a blocky character. 
The connectivity number (NC(c» defines the number of 
particles in class c minus the number of holes in them. The 
higher the number of entities, the greater the disseminated 
aspect of the class. 
The boundary density (DF(c» represents application to a 
given class of the shape coefficient for isolated objects, and 
provides information on the physiognomy of edges in that 
class. 
The results of the calculation of synthetic measurements of 
shape are shown in table III. 
The morphological compactness of classes alunite and 
kaolinite in the box classified image and the K-nearest 
neighbour image are low giving them a blocky aspect. 
Maximum likelihood classification yields better results, 
however, the indicator kriging classified images score best 

table III: Morphological characteristics of 
classification results. 

BOX CL. MAX. L1K. K-NEAR 1ND1C.M1N 1ND1C.MAX 
alun kaol alun kaol alun kaol alun kaol alun kaol 

.17 .07 

.84 .93 
20 45 

.38 ++ 

.68 ++ 
4 ++ 

.17 .01 .50 

.87 .98 .66 
16 32 28 

.20 

.82 
49 

.62 

.57 
9 

.39 1C(c) 

. 73 DF(c) 
16 NC(c) 

with this respect. The connectivity number of all methods is 
high, especially for the class kaolinite, although maximum 
likelihood classification and the indicator kriging based 
methods perform best with this respect. The boundary 
density for the indicator kriging based methods is 
significantly lower than for the conventional classification 
techniques, thus indicating less isolated objects. 
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CONCLUSIONS 

Direct identification of earth surface materials on the basis 
of their unique spectral reflectance features is now possible 
using imaging spectrometry (e.g. AVIRIS) in comparison 
with laboratory spectra. New image processing and analysis 
methods have to be developed in order to cope with the 
large amount of data available. Indicator kriging techniques 
as classification routines for image analysis allows for direct 
use of spectral information without prior knowledge of the 
geology of the area. A major advantage of this new 
technique is that it gives access to the reliability of the 
results and that areas smaller than the pixel size can be 
classified. In terms of visual aspects of classes and in terms 
of correctness of the classification, the new method performs 
better than the conventional methods. 
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