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Abstract 

A combined method for cloud analysis is presented, 
using remotely sensed satellite data as well as conven­
tional surface observations. Satellite data (NOAA-
11) is classified applying a fuzzy logic approach. This 
algorithm has the following characteristics: Classes 
are defined by the user directly using fuzzy logic lin­
guistic variables instead of training data. For each 
pixel the possibility of class membership is given as 
a fuzzy membership function. The algorithm has 
therefore the ability to determine cloud cover per­
centage of mixed pixels, which are frequent at the 
APT-resolution. Comparison of classification results 
against a maximum likelihood classification algorithm 
are demonstrated for one scene. In a first step, four 
cloud classes, high convective cloud, cirrus, middle 
cloud and low cloud are classified. Cloud cover frac­
tion can be derived directly via fuzzy logic operators. 
To compare ground observations of cloud cover to the 
result of the classification a weighted filter is applied 
to the image, simulating the ground observer's per­
spective of the sky. 
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INTRODUCTION 

Clouds are probably the most important parameter 
controlling the radiation (and heat) budget, conse­
quently, they have a very crucial impact on climate. 
A requirement for accurate cloud data does not only 
exist for climate models on a global scale, but also on 
a regional scale. One of the objectives of the REK­
LIP (Regio-Klima-Projekt) climate research project is 
a better understanding of heat balance in the Upper 
Rhine Valley. For these purposes it is not only neces­
sary to determine cloud cover, because cloud impact 
on radiation like refiexion, scattering, emission at dif­
ferent wavelengths are also depending on parameters 
like cloud type, cloud height, optical thickness. 

Retrieval of cloud parameters is based on more 
than 400 NOAA-AVHRR ~cenes recorded daily at 
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GIB/ AMK (Geographisches Institut Basel, Abt. Me­
teorologie/Klimaoekologie) since November 1990 be­
tween 12:00 and 14:00 GMT. 

The research area, the so-called Regio, is located in 
central Europe covering parts of France, Germany 
and Switzerland. It is bordered by the mountain 
ridges of the Vosges in the west, the Black Forest 
in the east an the Jura in the south. The northern 
border is at the german town of Pirmasens. The size 
of the area is about 23 000 km2 . 

CLOUD OBSERVATIONS 

Surface observations 

Apart of their poor spatial resolution, ground obser­
vations comprise many sources of errors because vi­
sual observation is the only means in operational use. 
Cloud cover is taken in okta and is defined as the 
fraction covered by cloud from a central perspective. 
An observer may for instance under- or overestimate 
cloud cover significantly due to perspectivic distor­
tions. Usually surface based cloud cover observations 
overestimate cloud cover by about 15 percent. On the 
basis of this data it is not possible to determine the 
spatial distribution of clouds. 

Satellite observations 

Cloud cover observed by the sensor of a satellite at 
a certain spectral band could be defined as the frac­
tion of the sky that is covered by clouds from vertical, 
parallel perspective, with no respect to type, height 
and density of the clouds. Different cloud cover per­
centages are observed for different spectral bands. 

It is by no means clear that a unique def­
inition for cloud amount even exists; the ef­
fective cloud cover fraction for incoming so­

lar radiation might differ significantly from 
that for outgoing infrared radiation. (Cess 
et al., 1982) 



Direct comparison between surface observations and 
satellite cloud statistics is extremely difficult. 

No accepted conversion exists between 
satelli te-deri ved percentage cloud amount 
and the okta and tenths scale of surface ob­
servations. (Hughes, 1984) 

CLOUD CLASSIFICATION 

Cloud retrieval algorithms can generally be divided 
into two classes: 

1. Classification algorithms based only on spectral 
information like simple threshold techniques, un­
supervised or supervised clustering techniques; 
and 

2. Classification algorithms based on spectral and 
spatial textural information. Textural informa­
tion is extracted by the use of neighbourhood 
operations (Ebert, 1989; Khazenie and Richard­
son, 1991). 

It is obvious that the classification accuracy increases 
with the number of input parameters. Application of 
satellite data in climate research necessarily leads to 
a conflict between the amount of data that should be 
taken into consideration and processing time for com­
plicated classification algorithms. Threshold tech­
niques, which only give a crude impression on cloud 
cover and cloud type, are applied for global cloud cli­
matologies like ISCCP or NIMBUS (Rossow, 1991; 
Hwang et al., 1988). On the other hand, sophisti­
cated algorithms are applied to single or few NOAA 
or Landsat-TM scenes (Arking and Childs, 1985; 
Wielicki and Welch, 1985; Ebert, 1989). These re­
sults are not representative in a climatological sense. 
To take full advantage of satellite data for climate 
research, it is necessary to devellop classification al­
gorithms which lead to acceptable results without re­
quiring too many processing steps on the basis of data 
which is available at low cost and in acceptable spa­
tial, temporal and spectral resolution. 

Maximum Likelihood Classification 

Maximum likelihood (MLK) as a supervised statisti­
cal classification technique assumes probability distri­
butions of the form of multivariate normal models for 
every class defined by training data. The statistics of 
training data is of essential importance for the result­
ing classification. There are some particular obstacles 
to cloud classification of APT-data with maximum 
likelihood: 
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• Pixels at every point in multispectral space are 
classified into the class with the highest proba­
bility of class membership. For pixels with very 
low probabilities, the problem of misclassifica­
tion is usually solved by application of thresh­
olds. Mixed pixels that are not rejected are clas­
sified into one of the classes they represent. 

• Normal Distribution of probabilites is rather an 
assumption than a property of natural spectral 
classes. 

• It is not always possible to determine a suffi­
ciently representative amount for each class when 
defining classes by digitizing training pixels. 

• A deterministic definition of a class is not possi­
ble. 

Fuzzy Logic Classification 

According to fuzzy logic theory, for every pixel value 
x and every class A, there is a membership function 
of x to A. In binary logic mA( x) can only be equal 
to 0 or 1, while mA( x) in fuzzy logic can have all 
real values from 0 to 1. The membership function 
can be considered as a measure for the possibility of 
x belonging to A. 

A = {(x, mA(x))} 

Using this formalism, two basic membership functions 
describing high and low spectral response were de­
fined by Blonda (1991) for the purpose of land-use 
classification on the basis of Landsat-TM data. These 
functions can be modified by fuzzy logic operators as 
follows. 

V ERY(A(x)) = (mA(x))2 

QU ASI(A(x)) = sqrt(mA(x)) 

NOT(A(x)) = (1- mA(x)) 

Fuzzy Logic operators AND and OR can be either 
minimum operators or product operators depending 
on the degree of compensation that is to be expressed. 

(A(x))AN D(B(x)) = M IN(mA(x), mB(x)) 

(A(x))AN D(B(x)) = mA(x) * mB(x) 

(A(x))OR(B(x)) = M AX(mA(x), mB(x)) 

(A(x))OR(B(x)) = M IN(l, mA(x) + mB(x)) 

Combinations of the functions HIGH(x) and LOW(x) 
wi th these fuzzy logic operators enable the user to 
define classes by describing the spectral response in 
every channel. It is not necessary to determine the 
statistical parameters of training data, which have the 
above mentioned uncertainties. 



Fuzzy-Logic Membership Functions 
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Figure 1: Membership function HIGH modified with fuzzy logic operators very, quasi, not 

THE FUZZY LOGIC CLASSIFICATION AL­
GORITHM 

On the basis of this approach, a classification method 
(FLOP) was develloped for cloud classification with 
NOAA-APT. NOAA-APT data format has a spatial 
resolution of 3.3 km 2 and a spectral resolution of two 
channels: 

1. channell (0.58-0.68 pm) 

2. channel 4 (10.3 - 11.3 pm) 

A simple geometric correction of APT data is done 
before transmission of the data as an analog signal. 
At GIB/ AMK, geometric distortion is corrected by 
polynomials of third order. Coefficients are estimated 
by identification of at least 12 ground control points. 
Due to auto-contrasting during reception of the APT 
data, the pixel values have different scales and offsets 
for every scene. For maximum likelihood classifica­
tion it would be necessary to apply a calibration or 
to determine training data for every scene seperately. 
The FLOP classification algorithm therefore defines 
the classes by giving the position of the values. rela­
tive to minimum and maximum of every scene. One 
percent of the pixel values are cut off at the upper 
and lower part of the histogram, because these values 
often are due to noise. Instead of applying a fixed, 
deterministic threshold value seperating cloud from 
background for each pixel iI\ multispectral space, the 
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result of the fuzzy logic classification algorithm is the 
value of the membership function for each class at 
every spatial location. For every cloud type, there is 
a resulting image, which can be converted to cloud 
cover. 

Using the fuzzy logic language, 4 cloud classes are 
characterized spectrally by the linguistic variables 
listed in table 1. Class definitions have to be adapted 
to changes in temperature and radiation during the 
year. 

Using the minimum operator for AND, the cloud 
cover percentage can then be defined as follows: 

c = (mA(xd + mA(x2) + ... + mA(xn )) AND 1 

VALIDATION, RESULTS AND DISCUS­
SION 

The application of the FLOP algorithm to the im­
ages shown in figure 2 gives the image of cloud cover 
percentage shown in figure 3. To validate results, the 
same scene was classified using a supervised maxi­
mum likelihood technique. A set of 6 classes has been 
selected for this purpose. 

As mentioned before, there is no uniform conversion 
between surface based cloud observation and cloud 
cover derived from satellite data. To compare classi­
fication results, the cloud cover images were filtered 
with a template weighting each pixel with a value 



class channell channel 4 
Low cloud high not very high 
middle cloud not high and not very low not high and not very very low 
high convective cloud high high 
CIrrus not high very high 

Table 1: Fuzzy logic membership functions for 4 cloud classes 

Figure 2: NOAA-ll 14.7.91 channel 1 and channel 4 
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Figure 3: Fuzzy logic classification: cloud cover 
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cloud cover observation in okta 

Figure 4: Regression analysis ground observation -
FLOP 

cloud cover observation in okta 

Figure 5: Regression analysis ground observation -
MLK 

according to it's distance from the center and cloud 
height. This operation generates an image of cloud 
cover as observed from a ground station. The tem­
plate size was set to 17 pixels (about 56 km). 

In figure 4 and figure 5 classification results are plot­
ted against data from 44 DWD (Deutscher Wetterdi­
enst) ground stations. Date of observation was 14:30 
CET on 14.7.91. The ground stations are located in 
southern Germany, where convective clouds covered 
parts of the sky during observation. 

This type of cloud is difficult to detect using the MLK, 
because cloud size is small compared to pixel resolu­
tion. Cloud cover is overestimated because a great 
number of mixed pixels are classified as cloud. The 
regression coefficient is 0.62 for the regression ground 
data - MLK. For the fuzzy logic algorithm the corre­
lation coefficient is 0.81. This is explained by a bet­
ter classification of inhomogenous parts of the cloud 
classes (like cloud edges). 

Considering that these results are only a first step 
in the development of an appropriate classification 
method for time series of satellite data, they show 
that fuzzy logic seems the better means to describe 
the characteristics of clouds for classification. 
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