450

A Query Language for a Spatial Information
System]

Linda G. Shapiro

Swapan N. Engineer

Virginia Polytechnic Institute and State
University

USA

Commission IV

I. Introduction

Qur spatial information system (Shapiro and Haralick, 1980,
Vaidya, et.al., 1982) is an entity-oriented database system,
designed for flexible access to spatial information for use in
cartographic applications. The building block of the system is
the spatial data structure which is formally defined as a set
of relations whose components may be atoms (nondecomposeable
values) or may themselves be spatial data structures. Spatial
data structures represent such entities as countries, states,
cities, rivers, lakes, railroads, and so on. Relations
represent spatial relationships such as adjacency, containment,
or distance between two entities.

Because the spatial data structures are both hierarchical and
relational in nature, standard query languages are not
applicable. Instead, we have designed a powerful new query
language SQL, that is similar to SEQUEL (Astrahan and
Chamberlin, 1975), but designed to handle queries involving
entities and relationships at any level of the hierarchic
structure. The standard relational operators (projection,
.selection, join) and the set operations (union, intersection,
difference) have been extended both syntactically and
semantically for meaningful use with spatial data structures.
An "intelligent" parser has been implemented that can translate
user queries to a sequence of primitive actions leading to a
response. The parser uses syntactic knowledge of the structure
of each entity type in the system in the translation process.
Thus the user can formulate very simple queries that work with
fairly complex structures.

In this paper, we will briefly describe the spatial information
system, define the query language SQL, and give examples of its
use. ’

II. The Spatial Information System

In our spatial information system, each geographical entity is
represented by a spatial data structure which is defined in the
following paragraphs. The terminology is taken from Shapiro
and Haralick (1980).

An atom is a unit of data that <cannot be broken down any
further. Integers and character strings are common examples of
atoms. An attribute-value table is a set of pairs A/V = {(a,v)
| @ is an attribute and v is the value associated with a}. The
value v can be an atom or a complex structure. For example, in
an attribute-value table for a county we may have as the value
of an attribute called STATE, the name of the state in which

Lsi

the county belongs, or the structure for the state itself.

We now formally define a spatial data structure as a set D =
{R1,...,RK} of relations. Each relation Rk has a dimension Nk
and a sequence of domain sets S(l1,k),...,S(Nk,k). That is, for
each k = 1,...,K, Rk belongs to (S(l,k)x ... x S(N, ,k). The
elements of the domain sets may be atoms or sp%tia] data
structures.

Since the spatial data structure is defined in terms of
relations whose components may themselves be spatial data
structures, we call it a recursive data structure. This
recursive nature of a spatial data structure indicates that
often it will be possible to describe operations on the
structure by simple recursive algorithms.

A spatial data structure represents a spatial entity (however,
we can represent any other entity with the same degree of
flexibility). The entity might be as simple as a point or as
complex as a whole map. An entity has global properties,
component parts, and related spatial entities. Each spatial
data structure has one distinguished relation <containing the
global properties of the entity that the structure represents.
The distinguished relation is an attribute value table. When a
spatial entity is made up of parts, we may need to know how the
parts are organized. Or, we may wish to store a list of other
spatial entities that are in a particular relation to the one
we are describing. Such a 1ist is just a unary relation, and
the interrelationships among the parts are n-ary relations.

From the definition of the spatial data structure it is clear
that it can be used to create an arbitrary hierarchy and that
spatial data structures and relations alternate in any
hierarchical path. This has a very important implication; with
a database organized in this manner, we can do everything that
we could with a hierarchical database like IBM's IMS and a
relational database like IBM's System R and some other things
that may be very difficult or wunnatural to do with either of
them. Also we <can combine the efficiency of the hierarchical
model with the ease of wusing a relational model. Efficient
utilization of space is sometimes easier to achieve by using
hierarchies than relations. To represent one to many
relationships, if we use the relational model, we have to
duplicate some data unnecessarily. A combination of the
hierarchical and the relational model will, therefore, help us
optimize space. A comparison of data manipulation languages for
a purely relational database and purely hierarchical databases
is like comparing LISP with an ASSEMBLER (Ullmann, 1980), since
the hierarchical model has very primitive data manipulation
languages and requires the user to navigate through the system.
The relational model, on the other hand, normally has very high
level and concise query languages.

In the system we have developed, we have tried to retain the
best features of the hierarchical model and the relational
model.

452

III. Prototypes

Formally a prototype for a relation defines the domains for

each of 1its attributes. A prototype for a spatial data
structure defines the types (prototypes) of its member
relations. In the literature the word prototype is

interchangeably used with a conceptual model or a schema or a
view.

One of the primary goals of a database system is to systematize
access to data elements and to achieve data independance (Date
1981). When applications are data dependent, it is very
difficult to change the storage structure or the access methods
without any side effects. A prototype (or a number of
prototypes) defines the logical structure of a database system
without any consideration for storage/access methods
(Wiederhold, 1977).

Let wus define the logical structure of a database for a
country. First we will give a high Tlevel description of
prototypes that is computer/programing language <independent.
We have the entities COUNTRY, STATE, COUNTY, CITY etc. Each
entity has some properties and relations that identify it. The
spatial data structure (SDS) described above is ideal to
represent an entity logically.

Figures 1 to 4 show the prototypes for different SDSs and
relations in the system. In Figure 1 we have shown the
prototype for a country. We treat a country as an entity with
four relations; av_country, state adjacency, exports, and
imports. The relation av_country is the attribute-value table
for the country. The attributes for the country are the name
of the country, the area of the country, the population of the
country, the number of states in the country, the name of the
continent to which the country belongs, the national language
of the country, and the name of the capital of the country.
The relation state_adjacency is a binary relation in which each
component is a spatial data structure representing a state.
Exports and imports are unary relations and store the names of
the commodities the country exports, and imports, respectively.
Figures 2 to 4 have similar explanations.

Operations on prototypes include creation, deletion, display,
equality test, concatenation, copying, and saving. Prototypes
are created when requested by the user or when required for a
newly created SDS or relation. Prototypes for temporary or no-
longer-used SDS's and relations are deleted. When two
prototypes are determined to be equivalent, one can be deleted.
Concatenation of prototypes 1is required for the result of
certain Jjoin operations and copying is a wutility used with
several creation operations such as union. Saving a prototype
makes it permanent.

COUNTRY

AV_COUNTRY

STATE_ADJACENCY

AV_COUNTRY

NAME

EXPCORTS

- AREA

IMPORTS

EXPCRTS

POPULATION

NUM_STATES

CONT INENT

LANGUAGE

CAPITOL

3

STATE_ADJACENCY

1

(STATE!L)

(STATE2)

.

N

Figure 1: Prototype for a country

453

L5k

STATE AV_STATE

AV_STATE NAME
COUNTY_ADIACENCY AREA
EXPCRTS POPULATION
IMPCRTS COUNTRY

NUM_COUNTIES

CAPITOL
IMPCRTS

;
EXPORTS |
. COUNTY _ADIACENCY

[CCUNTY} (COUNTY2

©
.

3 M @

T e .

LEE——— : S gt T e
et N

s

Figure 2: Prototype for a state

COUNTY AV_COUNTY
AV_COUNTY NAME
CITIES ' AREA
POPULAT ICN
STATE
NUM_CITIES
CITIES
(CITY)

.

Figure 3: Prototype for a county

cITY AV_CITY

AV _CITY | NAME

AREA

POPULATION

LATTITUDE

LONGITUDE

Figure 4: Prototype for a city
IV. The Spatial Query Language

The operations in the Spatial Query Language (SQL) consist of
simple projection, selection, simple join, equi-join, general
join, union, intersection, difference, and display. The
operations are meaningful on relations and on entire spatial
data structures. The exact syntax and semantics of the
operations are complex and are given in Engineer (1983). Here
we give some introductory examples with explanations.

Simple Projection

1) "Select name (city), area (state,city)
Into name_area
From Virginia.

Assuming that Virginia is a name of a state, this query
generates a new binary relation name area that contains the
name of each city in Virginia together with its area.

We can specify query 1) in several different ways, all of which
will cause the system to follow exactly the same steps and
produce exactly the same output. One of the ways in which we
can restate query 1) is:

1') Select name (city), area
Into name_area
From Virginia.

Action: The operand of the "From" (called ID) is either a name

k55

of an SDS or a relation and the attribute 1list after "Select"

(called ALIST) is a Tlist of attributes whose values are
required. As the definition of the spatial data structure has
recursion built into it, the semantics of select, project and
join are no longer wexactly the same as their conventional
definitions in a relational database. In particular, it is no
longer required that the attributes specified in the ALIST be
in ID.

If ID 1is an SDS, member relations are searched for the
attributes in ALIST. 1If a particular attribute is not found in
any of the member relations prototypes of SDS's that are

456

components of member relations are searched and so on. A
combination of depth first search and breadth first search is
employed to generate a path for each attribute in ALIST from

ID. Similarly if ID is a relation, a path for each attribute

in ALIST is generated by searching prototypes recursively.
Selection
2) Select name (city), area, name (state)

Into dense_cities
From usa

Where (population(city) / area(city) »>=
population (state) / (15 * area(state)) or
(population(city) > 10000.00).

3) Select x, y, z
From a ‘
Where not ((x >=y * x) and (z < - (x / y))).

Action: The action taken is the same as above, except that
predicates in the 1ist following "Where" (called PLIST) are
first tested and only when PLIST evaluates to true, does the
corresponding tuple of attributes in ALIST become part of the
output relation. A '*' can be specified as ALIST only if ID is
a relation. If '*' is specified as ALIST, weach entire tuple
that satisfies PLIST becomes part of the output relation.

4) Cross x, y
Into z.

5) Join x y.
6) Join x & y

Into z.
Action: If IDl and ID2 (the two names following “cross" or
"join") are relations, the cross (cartesian) product of IDl and

ID2 is computed. The results are saved in the operand of
“Into" if it is specified. ID1 and ID2 <can be arbitrary
relations with some/all/no attributes in common.

If ID1 and ID2 are SDSs, it is required that both have the same

prototype. A new SDS is formed (if "Into" ID3 is specified)

which contains exactly the same number of relations as ID1 and
ID2. The kth relation of the new SDS is a cross product of the
kth relation of ID1 and the kth relation of ID2. The names of
member relations for the new SDS are dynamically generated.

Equi-join

7) Jdoin x y
Over a,b,c,d.

8) dJoin x & y
Into z
Over a,b,c,d.

If ID1 and ID2 are relations, it is required that they have all

the attributes specified 1in the list following "Over" (called
JLIST) in common. Each tuple of ID1 is tested against every
tuple of ID2. Let tl denote a tuple from IDI1 and t2 that from
ID2. For a pair (tl, t2), 1if all the attributes specified in
JLIST have the same values in-tl and t2, a new tuple t3 is
constructed consisting of

1. the values of the attributes in tl, but not in JLIST,
2. the values of the attributes in JLIST, and
3. the values of the attributes in t2, but not in JLIST.

If “Into" ID3 is specified, t3 is added to ID3. It is possible
that this query may result in an empty relation or response.

If ID1 and ID2 are SDSs, it is required that they have the same
prototype.

General-join

9) Join x y
Into z ,
Where a(x) = b(y).

10) Join x & y
Into z
Where (a(x) »>= 10 * b

(y)) and
(c(y) < d(x)/f(y)

).

General-join is quite powerful compared to equi-join in that it
allows wus to- specify arbitrary conditions under which two
relations are to be joined. General join, however is Timited
in that it is not defined for spatial data structures.

Set Operations

Each set operator is a binary operator, and the result of the
operation has the same form as that of the operands. If ID1
and ID2 are relations, it is necessary that they share the same
prototype.

Set operations involving spatial data structures do not require
that SDSs participating in the operation share the same
prototype. In fact even if we impose the restriction that both
share the same prototype, we do not gain anything,

Display

The display command can be used to display any
relation/SDS/prototype.

k57

458

V. Retrijeval

Each query is processed by the parser which builds a
predicate tree -- an intermediate structure specifying all the
predicates that must be satisfied. After parsing, the
predicate tree is checked for type-validity; the final result
of evaluation must be a boolean value. Next a path-tree is
constructed for the attributes specified in the FLIST and
PLIST. This path tree representes the paths through the data
structures that lead to the required attributes which may come
from the top level of the SDSs or relations involved or may be
part of substructures. For example, the simple query

Select name (state), name (city), population

Into a_new_relation

From - USA :

Where ((population (state) / population (city) < 15) and
(area (city) > 100)) or
((commodity (state, exports) = ‘wheat').

generates the path tree shown in Figure 5

Retrieval s then achieved by a recursive algorithm
(Engineer, 1983).

COUNTRY
STATE_ADJACENCY
STATE!L

CCUNTY_ADJACENCY

AV_STATE e EXPCRTS

COUNTY ! name population commodity
CITIES
CITY
|
AV_CITY
|
name population <mm— area

Figure 5: Path-tree for a sample query

VI. Summary

The use of hierarchical relational structures allows for a
rich and natural representation of spatial data. The SQL
language extends the kinds of queries allowed in relational
systems to the more complex kinds of queries that can be asked
about the hierarchical relational structures. The syntax and
semantics of the language is, however, still very simple and
straight forward. In particular, the generation of path trees
during retrieval allows the wuser to specify as little as
possible and makes the system do all the work. An information
system based on these structures and this language should be a
very useful system.

References

Astrahan, M. M and D. D. Chamberlin, "Implementation of a
Structural English Query Language", Communication of the
ACM, 18:10, 1975, pp. 580-587. :

Date, C. J., An Introduction to Database Systems, Addison-
Wesley, 1981.

Engineer, S. N., An Experimental Spatial Information System, M.
S. Thesis, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1983.

Shapiro, L. G. and R. M. Haralick, "A Spatial Data Structure",
Geo-Processing, Volume 1, 1980, pp. 313-337.

Ullmann, J. D., Principles of Database Systems, Computer
Science Press, Rockville, MD 1980,

Vaidya, P. D., L. G. Shapiro, R. M. Haralick, and G. J. Minden,
“Design and Architectural Implications of a Spatial
Information System", IEEE Transactions on Computers,
Volume C-31, No. 10, October 1982, pp. 1025-1031.

Wiederhold, Geo, Database Design, McGraw-Hill, Inc., New York,
1977.

k59

	S42BW-110011516400

