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Abstract

The use of multitemporal data,the correction of systematic effects
and the consideration of collateral date, e.g. a digital terrain
model has improved classification performance considerable. With new
high resolution spaceborne systems the vicinity of the individual
pixels must be included 1in the evaluation. Typical approaches in
statistical texture analysis, structural texture analysis and the
evaluation of context are reviewed. The combination of these
techniques is demonstrated and major areas for further activities
identified.

1. Introduction

The classification of multispectral remote sensing data became more’

and more important .within the last 12 years.Supervised and
unsupervised classification of Landsat data is widely used, e.g. for
landuse mapping and agricultural and forestry inventories in many
countries. In the differentiation and mapping of «crop types
significant improvements were achieved with multitemporal data, e.g.
through the development of temporal- spectral profiles (e.g. Crist &
Malila,1980). The consideration of systematic effects, e.g.
directional reflectance properties in airborne data, results also in
better classifications (Pfeiffer, 1983).

To improve classification results further collateral information,
which Is not contained in the remote sensing data, can be included in
the evaluation procedure. Two types of collateral information should
De distinguished:
1. ‘“maplike" information, e.g. a digital terrain model or soils
Inap
2. general or specific rules establishing a relationship between
available data - remote sensing or collateral - and the classes
or effects to be determined.

For example Strahler (1881) and Hoffer et al. (1579) determined by
sampling in the field the <tree species distribution with
altitude,slope and aspect.They used this information in combination

with Landsat data and a digital terrain model to produce a more
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detailed forest cover map. Two of the different approaches are
discussed. Strahler (1981) calculated for each pixel the a priori
probability of the different tree species, based on altitude,slope
and aspect, extracted from the digital terrain model, and the
statistical species distribution. This pixel dependant a priori
probability was then wused in a standard maximum = likelihood
classification.

Hoffer et al. (1979) employed a layered classifier. In the first
step coniferous forest,decidious forest,water,meadows and bare rock
were classified with the multispectral Landsat data alone. In the
second step each vegetation class was subdivided based on the
statistical probability for species groups to occour at the altitude
of the pixel, extracted again from the DTM. Similarly DTM data were
used e.g. by Hoffer et al. (1979) to correct the illumination
differences in Landsat data due to topography.

2. Need to include texture and context in the evaluation

With all these techniques only a limited amount of the information
contained in remote sensing data - the spectral information for
individual pixels - is used. Experience in photointerpretation has
shown that texture, pattern, shape, size, position and shadow
contribute significantly to the information which can be extracted
from images. To wuse this information it 1is not sufficient to
evaluate each pixel separately but the vicinity or neighbourhood of
each pixel must be considered. In some cases it may be necessary to
evaluate the spatial arrangement of classes in the complete image.

With the relatively low resolution of 80 meters for Landsat data and
the lack of suitable evaluation procedures this was not to important

in the past.But with the much better resolution of the new spaceborne -

data - Thematic Mapper with 30 m and SPOT with 20 and 10 m resolution
- the neighbourhood has to be considered for many applications (see
Townshend & Justice, 1981). Furthermore a new generation of airborne
scanners with CCD arrays could expand the application of digital
image processing in remote sensing dramatically. It is therefore
worthwile to discuss major evaluation possibilities more in detail.
The techniques can be grouped under the keywords

1. statistical texture analysis
2. Structural texture analysis
3. evaluation of context

Often it is necessary to combine different techniques, e.g. spectral
and textural analysis to achieve good results as some examples will
demonstrate.

An interesting new approach is the wuse of multiresolution images
(Rosenfeld, 1984). For example in an image pyramid each higher level
Is created by averaging the intensities in nonoverlapping 2 x 2
blocks of pixels. These images stacked on top of one another
constitute an exponentially tapering pyramid of images. This data
structure offers interesting passibilities to evaluate local and
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regional Information, e.g. texture. A 'quad tree is another form of
multiresolution image with a more complex internal structure and is
discussed more in detail in chapter 5.

Unfortunately only a few comparisons exist for remote sensing
applications of the different techniques (e.g. Weszka et al., 1976,
Bargel, 1983).Furthermore many procedures were reported with new
data, making it wvery difficult to judge if they are really better
than existing techniques. The suitability of different approaches
depends very much on the data type, scale or resolution and the
application problem to be solved. In addition minor details of the
procedure, the evaluated data or the classes can have a significant
effect on the performance.Nevertheless it is attempted to give a
subjective overview of major techniques and their general suitability
for remote sensing applications.

3. Statistical texture analysis

In statistical texture analysis statistical properties are calculated
for all pixels contained in raster cells or segments.Haralick (1978,

1979) gives a good review of the many techniques. The definition of

the segments or the raster size is critical. In a regular grid the
raster cell boundaries often do not coincide with texture boundaries,
resulting in cells with two or more different textures. One of the
main problems is therefore the selection of a suitable cell size,
which should be large " enough to describe the texture properly, but
also so small that only one texture class 1is contained within a
cell.Possibilities to solve this problem are the use of different
raster sizes or the segmentation of the image as a first step, based
for example on a structural texture analysis (see chapter 4 and 5).

Fourier analysis yields information about the orientation and spatial
frequency of brightness changes in raster cells. It is useful to
separate major grours e.g. settlement and large agricultural fields,
characterized by a more or less regularly arranged pattern of
objects. Smaller differences, e.g. between decidious forest of
different age or settlement types are difficult to detect (Bargel,
1983). Furthermore computing time is fairly high.

Haralick et al. (1973) suggested co-occurrence matrices to
characterize texture. A co-occurrence matrix describes how often
combinations of brightness levels occour for pairs of pixels with a
given spatial relationship e.g. horizontal neighbours. B5ased on the
co-occurrence matrix Haralick et al. defined 14 statistical values
e.g. mean, contrast and entropy to characterize texture. The
Cco-occurrence matrices can be calculated for different distances and
orientations between pixel pairs resulting in many texture features.

Weszka et al. (1979) developed texture features based on histograms
of the absolute difference of pixel pairs with a given spatial
relationship. Thelr features are computationally less demanding than
the Haralick parameters. Weszka et al. studied the" influence of
orientation and aistance of the pixel pairs on the separation of
classes for their features and the Haralick parameters and featurss
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extracted from a Fourier analysis. Their study is still "very
interesting and provides some important insights.

They used two different data sets. One set with 9 different classes
(Urban, suburban, lake, woods, scrub, railroad, swamp, marsh and
orchard) consisted of 6 samples with 64 x 64 pixels per class taken
from large scale black and white aerial photographs. The second set
consisted of 3 different terrain types associated with 3 flatlying
rock types.tach terrain type was represented by 60 samples with 64 x
64 pixels from Landsat data and the visual inspection shows that the
differences between the three types are much smaller than in the
first set.

For the first set the contrast in *he co-occurrence matrix and the
mean  for the difference histogram was calculated for the 16
combinations of 4 directions - horizontal, vertical and the two
diagonals - and 4 distances (1,2,4,8 pixels). In addition one
feature for the 16 intersections of 4 rings and 4 wedges in a Fourier
power spectrum were used. For pairs of features the first order
statistics of the difference histograms performed slightly better (43
out of 54 correctly classified) than the second order statistics of

the co-occurrence matrix (40) and the Fourier analysis slightly worse

(38).Consistently for all 3 methods a combination of two distances in
the same direction performed best. This could be the effect of
strong diagonal elements in some samples. Furthermore a combination
with a very small distance (1 or 2) and a longer distance (4 or 8)
often in the same direction yielded good results, which were nearly
equal for a number of combinations.

With the second data set similar results were achieved.Texture
features based on the cooccurence matrices and the difference
histograms performed equally well and Fourier analysis gave worse
results. Here short distances (1 or 2) but with different directions
performed best. (Other features and averaging the vicinity of pixels
before the texture features are calculated were also evaluated. The
computationally cheapest of the investigated statistical features,
that is the means of single point difference histograms,performed as
well as the other features. Therefore there should be no loss In
classification power in using this feature. Depending on the data to
be evaluated direction or distance are important.

More recently Pietikainen et al. (1983) applied ‘"texture energy
measures" developed by Laws to two of the terrain samples of the
second data set. Laws properties are basically developed from
combinations of three simple vectors for center weighted local
averages, edge detection and spot detection. At least for certain
data they perform better than the difference measures discussed
above.

Hsu (1978) calculated texture features in very small windows (3 x 3
or 5 x 5) and classified the central pixel with this information.
Features are e.g. mean, standard deviation, mean contrast of the
central pixel to its neighbours and the area above and below datum
planes of 50, 100 and 150. He achieved 85 to 90 percent accuracy for
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general land wuse types wusing panchromatic aerial photographs
digitized to a resolution of about 2.5 and 17 m. Applying
essentially the same features to Landsat data with &0 m resolution
Irons & Petersen (1981) did not achieve wuseful results. This
emphasizes the fact that resolution or scale is very critical in
using texture analysis.

Other features are discussed in the literature (e.g. Haralick, 1978,
1979, Bargel, 1983, Pietikainen & Rosenfeld, 1982) but their general
usefulness is” not yet established. 0Often the selection of
appropriate control parameters, e.g. gray level intervals, is
difficult, the parameters are sensitive to noisy data or just do not
contain enough  information for a more detailed analysis
(Bargel,1983).

All of these statistical texture features evaluate only black and
white images or one band at a time. True multispectral texture
features, describing colour changes and not just brightness changes
are rarely used. Textures based on ratio images or the covariance of
two channels in a raster cell are very simple multispectral texture
features. Rosenfeld et al. (1982) suggest absolute difference
distributions in two bands similar to the co-occurrence matrix to
characterize multispectral texture. Sometimes they yield better
results than single band features.

4, Structural texture analysis

In structural texture analysis the spatial arrangement of texture
elements or primitives 1is studied.Consequently two steps are
essential:
1. Definition of texture primitives, which can be caracterized by
colour,size and shape.
2. Determination of spatial arrangements, e.g. the typical
distance between primitives.

To define primitives cluster techniques are often used to create
classes of spectrally similar pixels. Adjoining pixels of the same
spectral class are then grouped together and if they form regions of
similar shape or size define one set of texture primitives. Then
distance transformations or special graphs, e.g. a minimal spanning
tree, are applied to determine typical distances (e.g. Pavlidis,
1977). All primitives which can be connected by distances not longer
than this typical distance form a texture segment. An example in the
next chapter explains the general idea.

The notion of texture hierarchy (e.g. Desachy & Castan, 1982) is an
interesting extension. Texture segments again could be primitives
for the next hierarchy level of textures, defining a more global
relationship.

c>.Combination of spectral and textural information

Classifications based on either spectral or textural features alone
can be quite successfull for specific data and applications. B8oth
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feature sets are complimentary and therefore their combination should
improve classification results in many cases significantly.
Furthermore more flexible classification procedures can be developed.

Already one year after the launch of Landsat 1 Haralick et al.
(1973) combined texture parameters based on the co-occurrence matrix
with spectral features to separate coastal forests, woodlands, annual
grassland, small irrigated fields and large irrigated fields in
Landsat data.

The ECHO (extraction and classification of homogeneous objects)
classifier developed by LARS (Kettig & Landgrebe, 1976) presented a
different method. Here statistical tests are wused to find
homogeneous regions, which often correspond to agricultural fields.
Each region is then classified using a maximum likelihood sample
classification rule.

Two recent examples of very different approaches demonstrate the
basic ideas and possibilities to combine spectral and textural
information in an evaluation procedure.

The  "Forschungsinstitut fur Informationsverarbeitung und
Mustererkennung  (FIM)" is developing a system to evaluate
multispectral remote sensing data automatically without  human
interaction (Mauer & Scharf, 1982, 1983). The evaluation consists of
a sequence of procedures and the results of the preceeding steps
determine and control the next step. The system was tested with
images of airborne scanner data from Germany with a resolution of
approximately 4 m. A contrast detection algorithm distinguishes
between high and low contrast areas. Low contrast areas of
sufficient size indicate homogeneous areas. They are used as

automatically detected training areas and are fused into classes, if -

their spectral properties are similar. Then e.g. a maximum
likelihood classification is performed for the complete image . All
pixels which were threshholded and not assigned to a class in the
classification are included in a cluster analysis . The resulting
spectral classes together with the <classes obtained through the
maximum  likelihood classification yield a complete  automatic
multispectral classification of the image.

Only larger compact areas with the same class assignment in the
maximum likelihood classification and without pixels of other classes
are considered reliable final results. All other areas are included
In a structural texture analysis. Three different approaches are
used. Through shape analysis linear spectrally homogeneous regions
are identified, which form the starting points for line extraction
algorithms e.q. to detect roads.

In other areas pixels of the same spectral class, that is one type of
texture elements, are adjacent and form larger continous areas which
contain other classes. This not compact homogeneous regions indicate

a texture with a spectrally homogeneous background . For each of

this regions a statistical texture analysis in a raster is performed
to verify a uniform texture. Then the different non compact
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homogeneous regions are superimposed to define texture segments.

The remaining spectral classes mainly form small  spectrally
homogeneous regions which are potential texture primitives. For each

class of these texture candidates the distances between adjacent .

elements are investigated to define those areas which can Dbe
characterized by a typical distance between primitives. Again these
areas are superimposed and form a second seit of texture segments.
For all these segments a statistical texture analysis is performed.
Considering the adjacency segments with similar textures are
combined. In the final result major classes are seperated, which can
be labeled as villages, forests, rivers and different agricultural
fields. In a data set without large homogeneous objects a
statistical texture analysis in a raster could be the first step.

Characteristic for this approach is:
1. The alternation of spectral and textural analysis steps to
combine the advantages of the different procedures.
2. The sequence and the are2s %o hte evaluated are controlled by
the data and the already achieved results.
3. No interaction 1is required and a completely automatic
evaluation is possible.
4. Simple procedures are used first and complex algorithms are
only applied to a subset of data.

In a last step the user has to interpret and label the classes, which
are separated by the analysis procedure without any a priori
.information. The spectral and textural properties of the classes as
well as their position and distribution within the scene should allow
an experienced user a meaningful description of the clacses. e.g. as
suburban areas. This approach could Dbe compared with the
"unsupervised" clustering techniques in a pure multispectral
classification.

Haberdcker & Thiemann (1983) developed at IABG an  evaluation
procedure based ‘on a quad tree image structure. In a quad tree an
image is divided 1in four quadrants. Each quadrant Is again
subdivided in 4 smaller quads called sons and so on, until in the
last level a quad consists of only one pixel. For each of these
quads or nodes statistical values are calculated, e.g. the mean,
minimum and maximum of all pixels in the quad. If the aifference
between minimum and maximum is smaller than a threshhold, this quad
i1s not subdivided and indicates a homogeneous region. A high number
of  descendants that 1is sons, grandsons etc. within a quad
characterizes a texture in this region. ‘

In this system specific procedures are applied to extract classes.
To identify water as the first step all homogeneous quads are
classified with a maximum likelihood decision rule. For nodes of a
given minimal level, <classified as water, the adjacent nndes are
searched to determine the precise boundaries of the lake. HNodes
recognized as water,but not yet connected with lakes, are the
starting points for a line following algorithm to detect cresks and
rivers.
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The total number of descendants for a node of level 4 ( that is 16 x
16 pixels) 1is wused to identify inhomogeneous, possibly forested
areas. The co-occurrence matrix for these nodes is calculated and
comparad with the co-occurrence matrices of different forest classes
using a modified chi square test. For nodes accepted as forest a
multispectral classifcation 1is performed and detection of the forest
boundaries follows. Nodes not passing the chi square test indicate
other structured areas. They can be causad by roads, which are
detected with a line following algorithm.

Here a significant amount of experience is incorporated in the design
of the evaluation procedure, resulting in a specific sequence to
identify predetermined classes. This approach could be compared with
a "supervised" multispectral classification. It may be appropriate
if similar data are used. A change in resolution, e.g. from 4
meters in the example to 40 m for a satellite system could require a
substantial redesign of the classification sequence and a selection
of other characteristic features to identify classes.

6. Evaluation of context

Context can be a very efficient tool to identify objects. For
example boats and cars can be separated using context, even if they
have the same spectral properties. All  possible boats/cars
surrounded by pixels classified as water are labeled boats, those
surrounded by roads are labeled cars. . Misclassification would occour
if a boat is on a trailer on a road.

This basic idea can be employed in two different ways:
1. Considering context during classification.
2. Using context in the postprocessing of classification results.

Welch & Salter (1971) laid the basic foundations for contextual image
pattern classification. They used compound decision theory, which is
applicable if the same decision has to be made n times, e.g. for
each pixel. In theory all pixels or cells in the image should be
considered simultaneously, but in most cases only the adjacent 4 or 8
pixels are evaluated. The class transition probabilities are used to
describe context, that is the probability that a pixel belong to a
class, if the adjacent pixels belong to given classes. In most cases
the classes of the neighbouring pixels are not known and must be
estimated using e.g. the spectral properties of these pixels. Welch
& Salter used simulations with 22 categories taken from aerial
photographs  to test their procedures and found a significant
Improvement using context with the 4 immediate neighbours.

Similar approaches are discussed by Swain et al (1980). Yu and Fu
(1983) used a spatial stochastic model which is characterized by a
spatial correlation parameter. The resulting recursive contextual
classification was tested with Landsat data and improved
classification accuracies in residential and agricultural/forested
areas significantly. Only for commercial areas and golf courses the
classification accuracy decreased. Lumia et al. (1983) applied
image segmentation in aerial photographs to define units, which were
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assigned to cluster types. B8ased on the cluster types of adjacent
units texture classes were formed.

Computationally less demanding 1is the postprocessing of
classification results using context. The simplest form is the
cleanup of «classification results, e.g. to reassign a pixel
classified as «class X to «class Y, 1if a predetermined number of
adjacent pixels are classified as Y (e.g. Todd et al., 1880,
Scarpace et al., 1981). If great windows are used, a considerable
generalization can be achieved (Gurney, 1981). Itten (1980) employed
class specific patterns and Thomas (1980) .a proximity function,
giving more distant pixels less weight in the decision. Gurney &
Townshend (1983) used the direction and distance between clouds and
cloud shadows as context information.

A characteristic combination of classes in an area allows class
assignments on a higher level. A combination of the classes street,
roof, trees and grass could characterize a suburban area, the
combination of trees and grass in a downtown area a small park. Shih
& Schowengerdt (1983) wused typical combinations. of land cover to
seperate geomorphological units they could not differentiate
spectrally.

Flouzat (1982) followed another reasoning to determine poplar stands
in Landsat data. He used context to determinz all pixels classified
as Zecidious trees, which lay within large continous areas of this
class adjacent to rivers. All pixels meeting these requirements were
labeled poplar since under the climatic condition in that region only
near rivers the steady supply of groundwater needed by poplars is
guaranteed.

7. Conclusions and recommendations

1. Many different procedures were developed in the last years to
evaluate spectral, textural and context information in remote
sensing data and to combine them with collateral data. The
tools are available.

2. The gap between photointerpretation and the possibilities of
digital image analysis is decreasing. The experience already
acquired in photointerpretation should be more considered in
dizi*tal image analysis. '

3. It is difficult or time consuming to supply the additional
information required by many new technigues.

4. Tnere is a trend from general techniques to the use of
specific collateral information. The involvement of  the
application scientist is mandatory.

5. The usefulness and limitations of different techniques should
be investigated and compared more thoroughly.

6. The experience gained with different techniques should be
collected and distributed more efficiently to facilitate and
expeaite the application of the methods on a worldwide basis.

7. Suitable procedures or sequences of techniques and parameter
settings should be determined for different data types and/or
applications.

3. The effort for the training phase and the selection of
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appropriate  procedures must be reduced drastically for
operationel applications. To achieve this goal the
relationship between the features which can be extracted from
remote sensing data and the desired information must be better
understond. Basic research is still urgently needed.

9. The experience gained for specific applications on a regional
level should be incorporated 1in an expert system. With the
feedback from new experiments or data sets it should be
possible to slowly proceed to better estimates of the
characteristic values for given classes in a new data set.
This information could then be used for new projects to
elimirate most of the training phase or to label cluster
classes automatically. This could be regarded as a numerical
equivalent to a photointerpretation key.
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