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The visibility of targets in satellite image data is clearly limited by the spatial resolution of 
the sensor. This is why many attempts have been made and will be continued to improve the 
performance of earth observation sensor systems by reducing the size of the instantaneous field 
of view (IFOV). However, this is not the only way to achieve higher geometrical resolution in 
satellite imagery as long as additional information, which is available in multiple scene 
coverage, remains unutilized. Therefore, an approach has been developed which makes use of 
this type of information by merging the data from several images of the same area. This 
enhancement technique is called Data Cumulation. 

The paper starts with the theory of sampling image data over a scene, discusses the 
theoretical background of the approach and describes its implementation. Simulated Data 
Cumulation has been carried out using both artificial targets and satellite image data as well. 

The method was proven to be effective if certain requirements are met. The usefulness of 
the approach as well as its limitations are discussed in the paper. 

Introduction 

It is generally known, that the visibility of high frequency topographical objects, such as 
roads, canals, buildings etc., is strictly limited by the spatial resolution of the sensor system. 
Nevertheless small objects can often be recognized in some images, but they disappear or are 
only partly visible in others. This is due to the complex interaction between the pixel size 
(IFOV), the radiometrical contrasts and the orientation of the sampling grid relative to the target 
features. Let us assume that the same area is imaged several times by the same sensor under the 
same conditions. Then there will still be a significant difference in the data recorded from high 
frequency objects because the sampling grid is - from a practical point of view - randomly 
overlaid over the scene. However, these differences contain additional information on the 
object, information which mostly remains unutilized in image processing and interpretation. 

The purpose of this paper is to discuss the potential use of the additional information on 
small topographical features which is available from multiple scene coverage. In order to make 
use of this information a new set of image data is derived by merging multiple image data of the 
same area. This approach, which improves the visual presentation of the image data and 
enhances information extraction, is called Data Cumulation. Data from opto-mecanical scanners 
(MSS, TM), from opto-electronical scanners (SPOT) as well as from CCD-cameras can be 
subject to this enhancement technique. In order to describe the priniciples of the approach the 
imaging process should be analysed first. 

The imaging process 

Every imaging system reproduces the details of objects only within certain limits. These 
limits depend on the parameters and the performance of the imaging system as well as on the 
structure and the physical parameters of the objects concerned. It is often distinguished between 
»geometrical« and »radiometrical« resolution. The first one depends mainly on the pixel size, 
i.e. the IFOV. The second one depends on the sensor sensibility and the existing contrast. But 
both of them are interdependent from each other. Thus high frequency details can only be 
detected in an image if the combination of the geometrical dimensions of the object and its 
contrast exceeds a certain threshold. 
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For determining more the limits reproduction of objects, it is necessary to 
analyse the processing and system analysis. The principles 
can be case a signal. 

As a system is considered every transformation, which converts the input function f(x) to 
the g(x) an 'VV"," ... U. .. 'U'A 

g(x) = f(x) ) ( 1 ) 

linear and shift invariant systems. A system can be 
combination of the inputs fi(x) leads to the respective 

i = 1, 2, 3, .,' and any ai : 

fi(x» = L(fi(X» = ai gi(x) ( 2 ) 

Shift invariant is a system when a shift of the input causes the same shift of the output: 

g(x-c) = L( f(x-c) ) ( 3 ) 

The performance of a linear and shift invariant (LSI) system is described by its impulse 
response h(x), For instance, the impulse response of a photographic system is its point spread 
function. The function hex) describes completely the output of the system as a function of the 
input. The equation (1) will be : 

g(x) = f f(a) hex-a) da ( 4 ) 

The operation of equation (4) is called convolution of f(x) and hex), denoted by (*) : 

g(x) = f(x) * hex) ( 5 ) 

Furthermore, a system can be analysed in the frequency domain by means of the Fourier 
transformation 19]. outcome of system is not similar all frequencies of the 
input signal. Some for instance restrain high frequencies more than the low ones. 
This results a low pass filtering (smoothing) of the input, i.e. the output contains no 
frequencies, which are higher than a cut off frequency fg. The effect of a LSI system on any 
frequency results the modulation transfer function (MTF). The MTF is the Fourier 
transformation H(21d) of the inlpulse response hex) : 

H(21tf) = f hex) exp( -j 21txf) dx , j = IT ( 6 ) 

A remote sensing scanning system can be understood as a combination of two sub-systems, 
the imaging subsystem and the sampling subsystem. This is schematically sketched in Fig. 1 in 
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case of an opto-mechanical scanner; however, the principle is the same if other scanning 
systems, e.g. opto-electronical scanners, are concerned. 

a) The imaging subsystem. The input signal f(x) is the earth's surface spatial distribution of 
radiance. The reflected radiation comes from the scanning mirror to the detector through a small 
aperture and is converted into an electrical signal. The distance LU on the earth's surf'ace 

~x=2atan(ro/2) (7) 
where a is the flight altitude and the angle ro is the IFOV. The IFOV or the corresponding 
distance ~x controls the imaging process. In this process an image degradation (image blur) 
takes place as a result of the fact that the aperture dimension and consequently the distance ~x is 
large as compared to the high object frequencies (see f(x) in Fig.2). Therefore the output of the 
imaging subsystem is a smoothed signal (see g(x) in Fig.2). The smoothing characteristics of 
the imaging subsystem can easily be described in the frequency domain. The impulse response 
of the first subsystem is a rectangular function (Fig. 3) [3, p.21]: 

h(x) = ;x rect ( x I .1.x ) ( 8 ) 

The MTF of the subsystem is the Fourier transformation of h(x) (Fig. 4): 

H(21tt) = 

sensor 

f(x) 

g(x) 

sin (n ~x f) 
n ~x f 

x 

x 

Fig.2 Smoothing effect of the imaging 
subsystem 

hex) 

x 

Fig.3 Impulse response of a scanner 

(9 ) 

It is obvious that the imaging subsystem works 
as a low pass filter with a cutoff frequency fg = 
I/~x. Spatial frequencies higher than fg cannot be 
resolved, or can be observed as »false resolution« 
[2, p.64], [4, p.61]. The larger ~x is, the less 
high spatial frequencies can be received. The first 
subsystem is shift invariant, Le. the output signal 
is independent from its shift relative to an 
arbitrarily choosen coordinate origin. 

b) The sampling subsystem. From the conti­
nuous function g(x) a sequence of discrete values 
gs(x) is derived by the sampling subsystem 
(Fig.5). The sampling rate, Le. the number of 
samples (pixels) per IFOV or sampling frequency, 
is not the same for all remote sensing scanning 
systems. However, in most cases the sampling 
rate is about 1. Thus the spatial sampling fre­
quency fs equals I/.1.x. The sampling theorem 
(SHANNON) proves that a sampled signal contains 
no frequencies which are higher than fs/2, where 
fs is the sampling frequency [2, p.44]. 
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FigA Fourier transform of the impulse response 
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Fig.6 Principle of Data Cumulation 
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Therefore, the output g(x) of the imaging 
subsystem cannot be fully reconstructed 
through the sampled values gs(x), in any case it 
is only an [approximation. The resulting error is 
called sampling or aliasing error. By increasing 
the sampling frequency, the number of sampled 
values is also increased and the sampling error 
decreases. However, with regard to Data 
Cumulation it is important, that the sampling 
process is not shift invariant. Through shifting 
the subsystem produces a completely different 
sample sequence (see Fig.6). 

Muitisampling 

Sampling causes an information loss. This 
loss concerns the phase and amplitude for any 
frequency. As a result of it, the complete 
reconstruction of the sampled signal through its 
sample values is not any more possible. This 
may be illustrated by a small theoretical 
example. Let the signal be a harmonic function 
(Fig.6a) which is sampled three times (Fig.6b, 
6c, 6d). The starting points A, Band Care 
randomly distributed and generally not iden­
tical. The sampled values represent the original 
signal in different ways. In one case (Fig.6b) it 
gets even completely lost. Obviously the 
original signal cannot be reconstructed on the 
basis of the values of one single sample. 
However, it is evident that the entirety of data 
sets contains more information than each 
individual one. In order to make use of these 
fact additional information is necessary. This is 
the phase differen~ between the samples, i.e. 
the distances AB, BC or AC. For our idealized 
example two samples, for instance Band C, 
and the shift distance BC between them are 
sufficient for the complete reconstruction of 
the original signal (Fig.6e). 

Thus, the basic idea of Data Cumulation is 
to reconstruct the output signal of the sensor as 
good as possible out of the various sample sets 
available, and then to resample with a higher 
sampling rate. In the case of image data this 
process is carried out two-dimensionally. 

Muititemporal Imagery 
and Data Cumulation 

The multisampling of a signal can be 
compared with the acquisition of multitemporal 
image data. The imaging system measures the 
reflected radiation f(x,y,I) reaching the sensor. 
The radiation quantity depends on the reflection 
factor of surfaces (Le. on the position x,y) and 
the irradiance I (power density). Furthermore 



the radiation arriving at the sensor is influenced by the sun elevation and the atmospheric 
conditions. The Data Cumulation approach assumes that all the parameters involved remain 
invariant for all the image data. This supposition can be accepted in so far as invariant 
topographical features are concerned. If we assume, that the irradiance remains also constant, 
the. output signal of the imaging subsystem, which will be sampled, is identical for all 
multitemporal images: 

g (X-Ui, y-Vi ) = f (x-ui, y-Vi ) * h(x,y) ( 11 ) 

where ui, Vi are offset coordinates from an arbitrary origin for any image i = 1,2, 3 ... ; h(x,y) 
is the two-dimensional rectangular response function. Nevertheless, the sample sequences are 
different for every single image. Through Data Cumulation the image function g(x-ui, y-vi) can 
be locally approximated by a third degree surface function: 

g (x',y') = ao+alx'+a2y'+a3x'y'+a4x,2+asy'2+a6x'y,2+a7y'x,2+a8x,3+a9y,3 ( 12) 

where the coefficients ai are determined by a local LSQ adjustment. After this, resampling of 
the locally approximated image function g(x,y) can be carried out for the choosen sampling 
frequency. For this procedure of Data Cumulation sampling with double frequency as 
compared to the original data is appropriate. By higher sampling rates no additional information 
can be restored. 

The newly generated image has four times the number of pixels and a better resolution than 
each one of the original images. The enhancement causes the gain of spatial frequencies, which 
have a period of about two pixels (Fig.6). 
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Fig.7 Registration between the reference image and the support images 

Implementation of the method 

a) Reference image and mapping polynomials 

The Data Cumulation procedure requires the availability of several sets of image data. It is 
assumed that no significant changes in the object reflectivity occurred between the dates of data 
acquisition. Furthermore, the geometrical offsets between the data sets are supposed to be 
random values (as it is practically the case for satellite image data). From all provided images, 
one is choosen as reference image. The rest of them are called support images. In order to 
achieve registration between the support images and the reference image, mapping functions are 
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calculated by means of control points. The procedure can be handled in the same way as in any 
other process of geometrical correction. The mapping functions for any support image i = 1, 2, 
3, ... are polynomials of second or third degree: 

Ui = Fai (x,y) = ao+alx+a2y+a3xy+~x2+asy2 
Vi = Fbi (x,y) = bo+blX+b2y+b3xy+b4X2+bSy2 (13) 

where (x,y) and (U,V) are image coordinates, i.e. coordinates on the system, that defines the 
columns and rows of the pixel grid of the reference and support image respectively. The 
fractions (k,l) of (Ui,Vi), where -0.5 < (k,l) < 0.5 give the local shift, i.e. the phase difference, 
between the reference and support image (Fig.7). This is the additional information, which is 
necessary for the reconstruction of the image function. 

If the final result of the procedure is expected to be registered to a map coordinate system, 
this system has to be choosen as a reference. In this case all images involved are registered by 
mapping functions, and the Data Cumulation process yields a geometrically corrected image. 

b) Definition of the sampling grid 

The sampling locations grid is identical to the image system of the output image. In order to 
resample with double frequency as compared to the original data, the distance between the grid 
points must be half a pixel of the input images. The placing of the sampling grid on the image 
system of the reference image is arbitrary. For practical reasons the grid is defined as it is 
sketched in Fig.8. 
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Fig.9 Local approximation coordinate system 

The function g(x',y') approximates g(x,y) in a small area of 2·2 pixels, defined on the 
reference image. The coordinates (Xl,y') refer to a local system, shown in Fig.9. All four pixels 
of the reference image, i.e their coordinates and their gray values as well as the corresponding 
pixels on the support images, are used in the calculation of g(x' ,y'). 

The definition of the corresponding pixels and its coordinates in the local coordinates 
system will be realized through the mapping polynomials. The value of g(x',y') at the sampling 
point yields the pixel value of the output image. Four pixels will be calculated through one local 
approximation of g(x,y). 
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d) Correlation Grid 

The success of the Data Cumulation approach highly depends on the geometric accuracy 
achieved before merging of the data sets. The accuracy required is theoretically ± 0.1 of pixel. 
Therefore a high precision geometrical correction is necessary. For this purpose a correction 
grid is calculated with the grid points determined through digital correlation by means of a LSQ 
algorithm. approximate values required by this algorithm are the coordinates defined from 
the polynomials. The accuracy of the LSQ correlation according to ACKERMANN [1] lies 
beyond 0.1 pixel. These results have been confirmed by the calculations during this study. 

e) The Radiometric Correction 

The Data Cumulation approach 
assumes that all multitemporal image data 
involved are samples of the same 
continuous signal g(x,y). However, the 
illumination of the terrain, atmospheric 
influences, sensor performance etc. do not 
remain constant. Therefore, a radiometric 
adjustment of the multitemporal data is 
necessary. The discrepancies between the 
various data sets can be determined through 
the comparison of its histograms. Image 
data, which are derived from the same 
g(x,y), give similar histograms. Therefore 
a relative matching of the histograms is 
used for radiometric correction. 

Experiments with Simulated and 
Real Image Data 

Cumulation of image data has been 
carried out using data from an artifical 
target and simulated satellite image data as 
well as real satellite image data. 

Fig.II Low-resolution image 
of test target 

Fig.IO Test target 

Fig.'12 Cumulated target image 



The target of Fig. 10 served as an ideal test object to study the correct implementation and 
the effectiveness of the Data Cumulation approach. After digitization of the image simulated 
low-resolution image data (Fig.ll) were generated by averageing 3·3 submatrices. The offsets 
between the simulated samples were choosen randomly. In this case the additional information 
about the shift of the pixel grids, which is required for carrying out Data Cumulation, was 
known a priori and error-free. For the generation of the cumulated target image (Fig. 12) five 
low-resolution images were combined. 

Fig.13 Original TM data (384·384 pixels) Fig.14 Simulated low resolution data (128·128 p.) 

Fig.15 Data Cumulation (256·256 pixel) Fig.16 Cumulated data after filtering 
by merging of 5 low-resolution images 

The simulation of satellite image data started with a Thematic Mapper image of Berlin 
(Fig.13). Low-resolution images have been generated in the same way as described above 
(Fig.14). However, in this case the a priori known error-free phase information was not used 
for the cumulation process. The mapping polynomials were calculated by means of digitally 
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Fig.I7 Part of a NOAA-AVHRR image from an area in Greece 

Fig.IS Enhanced NOAA-AVHRR image after cumulation of 5 data sets and filtering 
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correlated control points, and Data Cumulation was applied. The procedure yields a blurred 
image (Fig. 15) as one would expect, because of the fact, that the imaging subsystem reduces 
the amplitudes of the recovered high frequencies more than the lower ones. Therefore highpass 
filtering can enhance the image significantly (Fig. 16). 

For a test with real multitemporal image data five subsets of images from the NOAA -
AVHRR (Advanced Very High Resolution Radiometer) in Band 4 (10.3 - 11.3 micrometers) 
have been used. The dates of acquisition of the images were 21.07., 07.08., 09.08., 10.08., 
26.08.1987. Figure 17 shows the image of 09.08.1987 which has been chosen as the reference 
image. Figure 18 is the Data Cumulation image (after filtering) showing improved resolution. 

Limitations of the Approach 

The application of the Data Cumulation approach can only be successful if certain require­
ments are met: 

a) Several sets of image data from the same sensor type must be available. According to the 
test results five images are sufficient, four images could be considered as a minimum. 

b) The Data Cumulation approach presumes, that no significant object changes occurred 
during data acquisition. Consequently, multitemporal images showing large seasonal 
differences or other large-scale variations can not be applied. 

c) The accuracy requirements with regard to the geometrical transformations are very high. 
Misregistrations are disturbing the effect of Data Cumulation. Therefore high precision 
techniques have to be applied. 

Conclusions 

The method of Data Cumulation was proven to be effective under simulation and real data 
conditions. Each cumulated image appears visually better than anyone of the input images. 

Tests with an artificial target clearly demonstrate the improvement, concerning spatial 
frequencies which are about equal to the cutoff frequency of the imaging system. Furthermore 
aliasing effects can be completely removed and the stepwise appearence of edges is reduced. 

Similar enhancement was achieved by cumulating simulated satellite data. Linear and small 
topographic features can be recognized, even though they were not visible at one of the input 
images. Comparison with the original data proves that these structures correspond to real 
objects. 

The experiment concerning real data (NOAA-A VHRR) is only a preliminary one. The image 
data used were of low contrast and with little variety of patterns. Nevertheless, the application 
of the method was successful. The result image, like all other examples, shows improved 
visibility of edges and other features. 

However, the application of Data Cumulation is restricted by some practical limitations and 
also by the computer time required. It will therefore be appropriate for special applications, 
where for some reasons the optimum interpretability of image data is desired. 
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