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Six models for processing DEY data using Least Sq~ares are contrived and 
tested • These models utilize the patchwise surface fitting technique in 
the moving coordinate system mode • Three methods are used to evaluate 
the models according to their statistical properties • These methods 
involve the determination of variance - covariance matrices , measures 
of scatter and correlation coefficients matrices. A reliability study 
is also held to determine the rejection matrices and the smallest de­
tectable error for each model • 

INTRODUCTION 
Surface fitting is a compact way of storing digital elevation data. it 
faci.litates the determination of intermidiate values between reference 
points by simple direct substitution. When polynomials are used to fit 
a set of DEM data points p the deviations between the measured and fitted 
elevations must be kept reasonably small. The simplecity of polynomials 
permits this goal to be approached using the least squares method. 
Least squares patchwise polynomial fitting is usually employed for the 
following reasons : 

i) To enable the use of low order polynomials in fitting as many cells 
as possible in one patch. This technique results in a reduction'of 
the Computer memory needed to store a given DEM data. 

ii) To introduce some smoothing or filtering effects to the data by 
eleminating a part of the random errors as a by-product of the least 
squares process • 

iii) To enable the use of statistical testing for comparison and judge­
ment of the performance of the models • 

In this paper six least squares patchwise surface fitting models are 
developed and evaluated • 

LEAST SQUARES SURFACE FITTING 
The employed fitting technique is based on the determination of the most 
precise unbiased estimates of the unknown parameters of a chosen polynomial 
as linear functions of the observations. Least squares surface fitting 
models can be used to represent DEM data, providing that : 
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i) The reference points are well distributed that they represent the 
terrain sufficiently accurate • 

ii) The observed elevations are statistically uncorrelated • 
iii) The horizontal coordinates of the DEM points are known without error. 
iv) The DEM data are free from blunders • 
v) The appropriate form and order of the fitting polynomial is chosen. 

In order to chose an appropriate surface fitting model , it is necessary 
to consider the following four parameters : 

i) The order and form of the mathematical representation of the surface • 
ii) The number and distribution of the reference points • 

iii) The type and point of application of the boundary conditions (if any). 
iv) The coordinate system used for planimetry • 

The well known mathematical model of least squares can be summarized in 
the following equations 

v + Z • T c (1) n.xl nxl nxm mxl 

( T t -1 Tt C • P T ) P Z (2 ) 

1\ 

Z III T c (.3) 

A 

V III Z Z II1II T C z (4) 

Where . . 
V is the vector of residuals • 
Z is the vector of the input data, which consists of elevations 

and boundary conditions . 
T is the matrix of coefficients of the unknowns, which is derived 

by the partial differentiation of the polynomial w.r.t. the unknowns. 
C is the vector of the unknown coefficients • 
n is the number of the observation equations • 
m is the number of the unknown coefficients . 
p is the weight matrix • ,.. 
Z is the vector of the computed values of observations • 

THE PLANIMETRIC COORDINATE SYSTEM 

Digital Elevation Models data are usually sampled under the same conditions 
of accuracy and precision. Therefore, all observed elevations can be con­
sidered to have the same variance , in which case the weight matrix (p) will 
be substituted by the Identity matrix. This assumption reduces eqn.(2) to 

C :: T t T )-1 T t Z (5 ) 

The term (T t T )-' Tt in the above equatton depends totally on the choice 
of the coordinate system. ( Hassan,1982 ) .Valuable computational advantages 
can be achieved if a local coordinate system is assumed for each patch with 
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uni t spacing between reference points in both directions" 
The local coordinate system approach gives rise to the patchwise process 
which resembles the following merits: 

i) Matrix (T) will be the same for every patch, therefore the deter­
mination of the term (T t T)-1 Tt will be performed only once " 

.. ~~~ 

ii) The planimetric coordinates of reference and densified points will be 
the same for all patches t which eleminates the effort of generating 
new sets of coordinates for each patch " 

iii) The part of the stat.1.stical analysis which includes the determination 
of the Cofactor matrices is carried out only once " 

i v) Once the elements of the matrix (Tt Tr' T t are determined , a simple 
algorithm can be written to calculate the coefficients of the poly­
nomial for each patch directly from the elevations of the reference 
points of this patch. The main statements of this algorithm will be 
of the form : 

n 
o L 

i==l 

Where Ki ( i = l,2, ••••• ,n ) are known coefficients derived from 
the elements of the above mentioned matrix " These coefficients 
posses the following properties : 

n 

L Ki :::: 1 for Cl i",i 

1\ 

L Ki :::: 0 for OJ ( j :::: 2,3, .... "tm) 
i .:d 
0. 

L \Ki ( = 1 for OJ ( j • 2,3, .... ",m) 
i-f 

(6) 

(7 ) 

These properties are not applicable for the cases in which boundary 
conditions are involved .. 

MATHEMATICAL MODELS AND REFERENCE POINTS PATTERNS 
A general form of a polynomial that can be used for DEM surface fitting may 
be written in the form 

z 2-
ij 

(8) 

In practice some of the terms of this polynomial are used " Selected terms 
can be used for specific problems to achieve ease of computations and to 
avoid singularity. Polynomials used in the present research are : 

i) The plane polynomial 
Z == Cl + C2 X + CJ Y (9) 

ii) The bilinear polynomial 
Z :::: Cl + C2 X + CJ Y + C4 X Y (10) 
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iii) The 6-term biquadratic polynomial 

z II1II + C2 X + OJ Y + °4 
2-

X + C
5 

'2-
Y ... 06 X Y (11) 

iv) The erm biquadratic polynomial 
2- ~ ~ C X'y" (12) Z lIIII + 02 X + y+ XY+ 05 °6 y+ C7 X Y + CsXy+ 9 
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Fig .. (1) Reference points patterns and coordinate. systems 

Hodel No .. (l) : 

A plane polynomial of the form of eqn.(9) is fitted to the four elevations 
of one patch using the coordinate system shown in fig .. (l)a 

Model No .. (2) 

The bilinear po'lynomial given in eqn .. (10) is used to fit the data of the 
four cells shown in fig .. (l)b .. 

:Model No .. () : 
The biquadratic polynomial of eqn .. (ll) '~8 used to f~t the elevations of 
the nine points shown in fig.(l)b .. 

Model No .. (4) : 

The biquadratic ,polynomial of lJodel No.. ) is used again to fit the ele­
vations and the boundary conditions of the four corners of one square cell 
(Jancaitis,et.al •• 197). Three observation equations are written for each 

point as follows : 

+ (1) 
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~Z 

~y 
• OJ + 2 05 Y + 06 X • ( Zi+l,j .... Zi ... l,j ) 12 ('15) 

A total of 12 equations can be written for each patch 

V + Z ::I T C (16) 
l2xl 12xl 12x6 6xl 

The vector Z in this case will consist of elevations and slopes • The ele­
ments of this vector are sorted point by point with the order of points shown 
in fig.(l)c • 

Model No. (5) :: 

The 6-term biquadratic polynomial is used once more to fit the elevations 
ot 9 eel1s. The pOints pattern and coordinate system used are shown in fig.(l)d 

Model No.(6) : 

The biquadratic polynomial given in eqn.(l2) is. fitted to the elevations of 
nine square cells using the points pattern and coordinte system of fig.(l)d • 

STATISTICAL ANALYSIS 

The evaluation of the performance of the six models under consideration is 
carried out using the following statistical concepts 

- Variance covariance matrices • 

- Correlation coefficients matrices • 

- Measures of scatter • 

- Reliability tests. 

VARIANCE - COVARIANCE MATRICES. 

The variances and covariances of a set of random variables are arranged in 

a matrix called the variance - covariance matrix • This matrix is symmetrical, 
its main diagonal consists of the variances of the variables and its off­
diagonal elements are the covariances of all possible pairs of these variables. 

Four variance - covariance matrices can be determined for each model • 

i) The variance - covariance matrix of observations· ( Uzz ) 
ii) The variance - covariance matrix of unknowns (Ucc ) 

iii) The variance - covariance matrix of residuals (Uvv ) 
iv) The variance - covariance matrix of the computed values of observations 

( U"'''' ) • zz 
Applying the general law of propagation of variances and covariances on 
equations (2) , () & (4) (Mikhail, 1976 ) : 

U zz ::I 6;' 2- p-l (17) 

p 

,.. 2-a: (T 
"t 1 

.-oJ p-
U" 
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P T )-1 (20) 
~ 

Where ~ is the apriori variance of unit weight • a: 2 is the apostriori variance of unit weight. 
If a variance - covariance matrix is divided by the variance of unit weight 
the resulting matrix is called a Cofactor matrix' Q ) • 

e.g. (21) 

CORRELATION COEFFICIENTS MATRICES 
In order to evaluate the contribution of each term of the polynomial in 
the fitting process • correlation coefficients are computed from the cofactor 
matrix of unknown parameters ( Qcc ) • These coefficients are arranged in 
a matrix called the correlation coefficients matrix ( R ) • The elements of 
this matrix are computed as follows 

I ( )~ ri,j - qi,j qi,i qj,j (22) 

Where r & q are the elements of ( R ) & ( Q ) respectively • 
The main diagonal of (R) represents the correlation ot a variable with 
itself which is always unity. 

MEASURES OF SCATTER 
The variance - covariance matrices (U) provide the required information about 
the precision ( deviation from the mean. or scatter) of the variables in terms 
of their variances and covariances • However, in some cases it may be usetul1 
to have a single value to measure the precision • Two such values are 

i) The generalized variance = determinant of (U) 
ii) The total variation = trace ot (U). 

Generally, large values of these measures indicate high degree ot scatter or 
low precision • Low values represent concentration about the mean. 

RELIABILITY VALUES 
Reliability studies are used to evaluate least squares models according to x 

i) Their .performance w.r.t. the possibility ot detecting blunders. 
ii) The influence of an undetected gross error on the solution • 
According to (Amer, 1981 ) , it is possible to determine the residuals 
after the least squares fitting • due to a single known error in the input 
elevations as follows : 

o 
o 

E 

o 
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Equation (23) determines the residuals ( ei ) at the model referenoe points 
due to a single gross error ( E ) at one point only • The application of this 
equation on model No.(2) with an error ( E ) at point 3 , gives 

el = e9 = -0.14 E e2 = e6 = 0.28 E 

eJ - 0.31 E e4 = e8 = -0.06 E 

e5 - 0.11 E e7 = 0.03 E 

In this model the largest residual oocures at the location of the gross error, 
which gives hope that errors in observations can be detected by the analysis 
of the residuals • However , in practice this detection can not be atchieved 
directly due to the following reasons : 
i) Blunders may occure in more than one point • 

i1) Matrix Qvv 1s singular, therefore it is not possible to compute the 
value of the gross error or its point of application from eqn.(2J) • 

In order to evaluate the fitting models used in this paper from the point of 
view of blunder detection, a quantity called the boundary value is determined. 
The boundary value ( bi ) at any point ( i ) is the smallest detectable error 
at that point • 
Another measure for the evaluation of models with respect to the possibility 
of localizing blunders is the so called Rejection matrices • These matrices 
are computed by introducing each boundary value as a blunder at the corres­
ponding point and rejecting the residuals greater than a specified value • 

RESULTS AND ANALYSIS 
Usually the evaluation of the performance of DEM conversion processes depends 
on the sampling density and terrain type. The least squares technique enables 
the use of statistical concepts that depends only on the mathematical model • 
Three Cofactor matrices are determined for each model, namely: Qcc fig.(2) , 
Qz~ ~d Qvv. Correlation coefficients between the elements of Qcc are 
computed and correlation coefficients matrices ,fig.CJ) , are constructed. 
The total variation is computed for the cofactor matrices of each model as 
shown in table (1) • This table shows that the total variation of (Qyy) is 
equal to the redundancy of the system , while that of (Qzz) is equal to the 
number of terms in the polynomial and that of (Qzz) is equal to the number of 
reference points used • The only usefull values are those of (Qcc) • 
Models (1),(3) & (4) have nearly the same degree of scatter while Models (2)& 
(5) posses the highest precision in determining the unknowns. 

The boundary values shown in fig.(4) indicate that er~ors in elevations at 
the model inner points can be detected more efficiently than those of the 
outer points, in other words smaller errors can be detected in the inner 
points. Model (2) is the best model in its performance with respect to gross 
error detection • 
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Fig.(2) Cofactor matrices for unknown parameters Qcc 
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Model. (1 ) : Model. () ) i 
....................... 

-O:7
J 

........................... 

[1 -.577 1 0 0 -.6) .... 6) 0 

1 1 0 0 0 0 

1 0 0 0 

1 0 0 

1 0 

]. 

Kadel. (2 ) a Model (4 ) a 
..................... 

1 0 0 0 1 o o .211 

1 0 0 ~ .240 -.81 0 -.540 

1 0 1 0 .... 8l. -.540 

1 1 o o 

1 0 

). 

Kadel. (5 ) : 
..................... 

1 .2 .2 -.54 .... 54 .ll. 

1 .08 -.71 0 -.29 

1 0 -.71 -.29 

1 0 0 

1 0 

1 

Kadel (6 ) z 
...................... 

1 .) ., .09 -.67 -.67 -.20 -.20 .45 

1 .09 .)0 .... 75 -.20 -.22 -.67 .50 

1 '.30 -.20 -.75 -.67 -.22 .50 

1 ..... 22 -.22 -.75 - .. 75 .56 

1 .45 .)0 .50 -.67 

1 .50 .)0 ..... 67 

1 .56 ..... 75 

1 -.75 

1 

Fig.() Correlation coefficients matrices for ( Qcc ) 
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'" \D " Jj .f.l' .".", 
$.2 S.2-
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,5.2 S.,. 

" C'4 
~ '<i 

5.0$' 4.' 4.~ IS. oS !~.,S 4.' 4., 

Kodel 4 G., 4.~ ..t., 13 5.55 !S·5S 

Model 5· )4odel 6. 

Fig.(4) Smallest detectable gross error ( boundary value) 

~OTAL vARIATION(TRAOE U ) I A .. 0: 
MODn. 

QX% Qcc Q .... 
%% Qvv 

1 4 2,75 .3 1 

2. 9 0.69 4 5 

.3 9 2.1.39 6 J 

4' 12 2.444 6 6 

5. 16 0.625 6 10 

6 16 1.562 9 7 

Table (1) Total variations as computed from the Cofactor matices 
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The correlation coefficients matrices fig.eJ) are used to evaluate the chosen 
mathematical models. Larger values of the elements of this matrix indicate 
strong correlation between the corresponding terms of the polynomial • Models 
are analysed as follows 
i) Model No.(l) : 

As expected in this case, no correlation occures between the second and 
third terms o~ the {,olynomial • However, relatively strong correlation is 
observed between the constant term and both the X and Y terms • This 
correlation "indicates that it is ,possible to eleminate the first term , 
in which case the degrees of freedom will increase to two and the eqn. 
will be of the form Z = Cl X + C2 Y 

The cofactor matrix of unknowns in this case will be : 

[

2/J 

-1/.3 -~~~ = 

The correlati~n matrix can then be determined as tollows 

R = ~1~2 -l~~ 
This analysis shows that no considerable gain is achieved by the adap~ 
tation of this model • 

ii) Model No.(2) : 
This is a perfectly designed model with no correlation between any ot its 
terms, however, this does not mean that this model should give superior 
results in practice • In this case the analysis of the variance - co­
variance matrices will be more usefull • 

iii) Model No.() : 
The value of -.6.3 may be considered high, in which case the terms 
including X2 and y2 may be eleminated from the mathematical model which 
will give Model (2) • 

iv) Model No.(4) : 

v) 

The high correlation between the second and fourth terms and also between 
the third and fifth terms suggests the elemination of the fourth and fifth 
terms, which reduces the polynomial to the bilinear form with the follo-
wing cofactor and correlation matrices 

1/9 .3.4 -1.4 -1.4 1 

L 
-.454 -.454 -.2:~ 2.8 1 -2 1 .. .357 -.598 

Qcc 1:1 2.8 -2 
R &III 1 -~598 

4 

Models (5) &: (6) . . 
These two models .can be treated simillarlY"however, as the redundancies 
are high, the elemination of any term is not practical • 
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CONCLUDING REMARKS 

The analysis of the variance - covariance matrices in not practical in patch­
wise DEM processing. The apostriori variance of unit weight must be deter­
mined for each patch t the mean value of this variance will not give a true 
representation of the precision of the system. However, it is possible to 
use the Cofactor and correlation matrices to establish a statistical base for 
the judgement of the performance of the different models of the patchwise 
fitting • Correlation coefficients matrices for the cofactors of the models 
are useful in the analysis and design of the least squares system ; namely , 
the mathematical model and geom~try of the model • The interpretation of the 
correlation coefficients matrices show that the choice of the number and 
degree of the polynomial terms is strongly related to the geometry of the 
system, i.e. the number and arrangement 'of the reference points • 
From the point of view of gross error detection , patches that contain more 
than one cell are better than those which include only four elevations and 
boundary conditions for one cell. The more cells included in the patch the 
higher the probability of gross error detection. The smallest possible de­
tectable gross error occures at the central portion of the patch. Reliability 
increases with the increase in redundancy and also with the increase of the 
values of the elements of the main diagonal of Qvv 
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