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Abstract: The accuracy of edge detectors in combination with non-linear smoothing filters is 
considered and their precision experimentally investigated. A synthetic 128 x 128 pixel image, 
consisting of triangle-shaped objects and ideal step edges, is used as true image. The image is 
artificially distorted by blur, Gaussian noise and impulse noise. The influence of these distor­
tions on edge location position is investigated for several edge detectors (the Prewitt, the Sobel 
and the Normal gradient operator) in combination with the median, edge preserving and 
conditional average filter. The Prewitt and Sobel operator show nearly the same characteristics. 
The Normal gradient performs well under nearly noise free conditions and also under heavy 
noise when combined with the edge preserving or conditional average filter. The median filter is 
superior to the other filters under heavy noise conditions, with respect to precision, but many 
edges are undetected. The edge preserving filter has the most consistent behaviour. 

1 Introduction 

Images are the most important data source to achieve spatial information. Information ex­
traction from images involves four steps: (1) image formation, (2) preprocessing, (3) analysis and 
(4) presentation and storage. Lemmens (1988) gives a comprehensive description. 

There are many phenomena that may degrade the image during image formation. Degrada­
tion compels preprocessing. If the degradation sources are known and can be adequately descri­
bed, a restoration procedure can be started. But very often no or insufficient know ledge about 
the degradation process is available; just enhancement techniques remain. Important enhance­
ment methodes in the present investigation are smoothing filters. 

Analysis is a two stage process: (1) segmentation and (2) pattern recognition. Although there 
exist other segmentation techniques, e.g. histogram thresholding and region growing, the most 
fundamental one for a majority of image processing tasks is boundary detection, i.e. tracing of 
boundaries between regions which are homogeneous in grey value and/or texture. Boundary de­
tection consists of two steps: (1) edge detection and (2) line following. 

The aim of this paper is to investigate systematically the precision of edge location of, in 
particular, three differential-type of edge operators in combination with some non-linear smoo­
thing filter as function of several types of degradation. In fig. 1 the scheme of the in vestigation 
is shown. 

The edge detectors under present consideration are: (1) Prewitt operator, (2) Sobel operator 
and (3) Normal gradient operator. Also three types of non-linear smoothing filters are looked at: 
(1) median filter, (2) edge preserving filter and (3) conditional average filter. 

Experiments are carried out on synthetic images, size 128 x 128 pixels, containing 23 triang­
les of different sizes, shapes and orientations, against a uniform background. This ideal image is 
artificially degraded by: (1) Gaussian noise (sigma = 5, 10 and 20), (2) impulse noise (1 % and 
5 %) and (3) blur (simulated by a 3 x 3 Gaussian weighted linear smoothing filter.). The edges are 
constructed as ideal step edges. Just edges between region wich differ in grey value are consi­
dered. No texture boundaries are investigated. As precision measure of edge location the ave­
rage distance between the detected edges and the lines in the ideal image is employed. 

First, in the next section, some preliminaries on edge detection and smoothing filters are 
given. Next, the performance of the ideal image, the simulation of the degradations and the 
applied precision measure are treated. Section 4 gives the experimental results and discusses 
them. 
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2 Edge Detectors and Smoothing Filters 

2.1 Edge Detectors 
Edge detection is part of boundary detection; a segmentation process. Extraction of bounda­

ries comprises! 
- detection of local edges (edge detection); 
- aggregration of the edgels (= edge elements) to lines on the basis of grouping criteria (line 

following). 
Edges are usually defined as local discontinuities or abrupt changes in image grey values and/or 
texture. We only consider here abrupt grey value changes. 

Edge detection is a filter operator on images, which attributes to each pixel a probability 
that the edgel is part of a real boundary. Commonly the edge strength or magnitude is used to 
indicate the edge probability. Often just a threshold on the edge magnitude is employed; all 
pixels with magnitudes above the threshold are part of a boundary, the other ones are not. It is 
possible to apply a less rigorous method by incorporating the edge strength of the neighbour 
pixels to decrease or augment the probability. This completion leads to edge relaxation (cf. 
Lemmens et al., 1988). In the present investigation a threshold is used. This can be done without 
objection, since the characteristics of the ideal image are well known. 
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Fig .. 1 Schematic review 

Smith and Davis (1975) have summarized some characteristics of edge detection: 
1 isotropy O.e. the insensitivety to edge orientation); 
2 edge type response O.e. behaviour under different type of edges); 
3 dynamic range of the grey values (i.e. the effectiveness over varying grey value changes); 
4 responses under noise conditions; 
5 adaptability to different image conditions during processing; 
6 computational aspects (time and storage aspects, machine independency). 

Our aim is to investigate the effect of characteristics 1-4 on edge location. We have extended 
point 4 (noise condition) to a more general notion: degradation conditions. Davis (1975) distin­
guishes three types of edge degradation factors: 

1 photon noise; 
2 blurring; 
3 texture. 
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In the present investigation noise and blurring are considered, with an emphasis on noise. Since 
edges are detected by operators which are usually of small size with respect to the image, edge 
detection is extremely sensitive to noise. Noise can be caused by very different phenomena, e.g. 
bit reversal during transfer of the digital signal, photographic graininess, quantization noise and 
defective sensor elements. There are many types of edges, e.g. ramp edge, ideal step edge, roof 
edge and spike edge. Fig. 2 shows some common types of edge profiles. Here, ideal step edges 
are considered. Although investigations on the influence of edge orientation on edge location 
and the difference between object and background grey values are foreseen, they are yet not a 
part of the present investigation. 
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\~ 
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Fig. 2 Some common types of edge profiles. 

Since the performance of edge detection requires both an image model and an edge model, it 
is a severe problem to deal with. This is affirmed by the large number of approaches published 
in the open literature, with which one has attempted to tackle the problem. None of the approa­
ches has proven to be fully satisfying and this again leads to the frequent publication of "new 
approaches" (e.g. Morgenthaler, 1981; Sethi, 1982; and Smith and Davis, 1975). H.ecently, Torre 
and Poggio (1986) have pointed out that edge detection is an ill-posed problem. 

The common approaches of edge detection can be divided into three broad classes: 
- template matching; 
- differentation; 
- variance analysis. 

The background of template matching is to compute the correlation between an image patch 
and masks corresponding to ideal step edges in a selected number of directions. Denoting the 
image patch signal by X and the template signal Y, the most simple correlation function is em­
ployed: discrete correlation, defined by: 1: X.Y. The mask giving the highest output is the re­
sponse and defines also the direction of the edge. 

The variance analysis is also often called moment analysis. The variances of the grey values 
are determined in several directions or the eigenvalues of the covariance matrix of some local 
difference function of grey values is evaluated. The operator described by Forstner (1986) is an 
example of the last kind. 

The differential method computes the gradient of the grey values of a local neighbourhood. 
There are two approaches: 

- derivation of discrete differentation "from the continuous case (gradient method); 
- approximation of the local grey value function by a least squares surface fitting and com-

putation of the gradient of the fit (surface fitting). 

The gradients are computed in two perpendicular directions, commonly corresponding with 
the rows and columns of the image matrix, leading to gx and gy. However, the Roberts gradient 
employes the diagonals as principal directions. The commonly employed edge responses, use the 
fact that gx and gy define a 2-D vector field, for which a distance and an orientation can be 
defined. 
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The distance measure leads to the edge strength or magnitude: 

221 M = (g + g ) 2 
X Y 

The gradient orientation is defined by: 

o = atan (g I g y x 

To save computation time often less time-consuming approximations of edge strength are used: 

or: 

M' I = ITI3X ( I gx I ' I gy I ) 

The above measures may be considered as special cases of the Minkowski general expression for 
dista~ces in a ~etric nbdi~ensional space. ,Let L(a,b) denote the distance between a and b, with 
coordmates: Xi and Xi ' 1 = 1, •. ,n, respectively. Then: 

L(a,b) = (~I X.a _ X.b I p ) lip = (~I~X.I p) lip 
i =1 IIi =1 1 

For n = 2, L(a,b) becomes for: 

p = 1: L(a,b) = I I::. XII + I I::. X2 I 

p = 2: L(a,b) = ( I::. X 2 
1 + I::. X 2 )! 

2 

p = 00: L(a,b) = max ( I I::. Xl I , 1,1::. X2' ) 

A third kind of edge response, which will depend on the size of the operator and the kind of 
edge, is the edge width. The larger the operator size, the larger the edge width. A ramp edge or 
a blurred ideal step edge will show broad edge responses and small edge strength magnitudes. 

For the gradient method, according to the differentation of a continuous signal, differentation 
of a discrete signal is defined. One of the most common schemes is: 

d d(~,i) = gx = g(i,j) g(i-l,j) 

d gCi,j) = = g(i,j) 
d y gy g(i,j-l) 

leading to the convolution masks: -1 

-1 1 

1 and -i (see fig. 3), i.e.: 

-1 
gy = g * 1 

The second approach of the differential-type of edge detection is by least squares surface 
fitting of the local grey value function. The surface is e.g. a (tilted) plane or a quadratic or even 
a higher order polynomial surface. The method actually requires an edge model. Common 
models are ramp edges. The least squares adjustment enables a hyptohesis testing on the 
assumed edge model (Haralick, 1980). 

The original Roberts gradient is derived from the approximation of a 2 x 2 neighbourhood by 
a plane, leading to two perpendicular gradient masks: 

g : 
x 

-1 
-1 

1 
1 and g : 

y 
-1 -1 
1 1 

The Roberts' gradient is usually applied as a linear combination of gx and gy= 

leading to the maskl:J: g : 
u 

and 

-1 0 
o 1 

= 

and g : 
v 

o -1 
1 0 



The Prewitt operator is originally derived from a second order polynomial surface fit within 
a 3 x 3 neighbourhood. The masks are shown in fig. 3. For a 3 x 3 window these masks are the 
same as for a surface approximation of the local image function by a tilted plane. Hueckel 
(1973) employs the surface fitting approach by using low-frequency polar-form Fourier basic 
functions on a circular disk in order to detect step edges. In the present investigation, the 
Pre wi tt operator, the Sobel operator and the normal gradient are regarded. Their masks are 
shown in fig. 3 
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Fig. 3 The masks and edge location of the investigated edges 

2.2 Smoothing filters 

Since, in general, image data will be corrupted by some kind of anomalies, often prior to 
segmentation, enhancement techniques are employed to reduce the effect of these anomalies. 
Smoothing is such a preprocessing techniques, aiming to diminish the noise portion in a signal. 

Many preprocessing methods may improve the subjective quality of images, but actually 
degrade the image for further digital processing (Yang and Huang, 1981). Since smoothing filters 
are very often applied previous to edge detection, their effect on edge location determination is 
substantial, when investigating the precision of edge location of edge detectors. 

Smoothing filters can be linear or non-linear. The most simple linear filter is just an 
unweighted averaging over a (e.g. 3 x 3) neighbourhoud. Although linear filters are easy to 
design, their drawback is that they don't only diminish noise but also edge signal. Furthermore, 
they only remove noise partially. So, impulse like anomalies are not totally eliminated but just 
spread out over a larger neighbourhood. In many applications non-linear smoothing can 
circumvent these problems, since they have edge preserving properties; i.e. impulse noise is 
removed without corroding edges. 

Three non-linear smoothing filters are incorporated into the present investigation for 
analysis: 

- median filter; 
- edge preserving filter; 
- conditional average filter. 

The median filter and the edge preserving filter are objective since they don't need human 
intervention. The conditional average filter requires a threshold, which introduces a subjective 
element. The median filter is thoroughly investigated (see, e.g. Yang and Huang, 1981; Bovik et 
al., 1987). The filter has been observed to be very efficient for especially impulse noise removal 
without perturbing edges. Our investigation affirms this observation. The above filters aren't 
treated here in more detail. A detailed treatment is given in Lemmens et ale (1988). 

Although it is not uncommon in digital image processing to employ smoothing filters several 
times in succession before segmentation takes place, we just employ the smoothing filters once. 
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3 Test Image and Figures of Merit 

First the creation of the ideal image is considered, next the artificial degradation of the 
image is looked at and the section closes with the treatment of some figures of merit, 
describing precision and reliability. 

3.1 Creation of the ideal test image 
To carry out experiments, a synthetic image (size 128 x 128 pixels), consisting of triangles is 
created. The design and performance of the image depends on the following characteristics that 
may affect edge detection: 

- isotropy; 
- edge type response; 
- dynamic range of grey value differences. 

The isotropy condition requires that the polygon configuration can be rotated with respect to 
the raster underground. As edge type response just ideal step edges are considered at the 
moment. The grey values of the background and the polygonial obje~ts should be changeable to 
fulfil the last condition. The creation of the ideal image requires also that the polygons have to 
intersect with the rasterline of the image matrix in order to compute the "exact" grey value of 
the mixed pixels. Mixed pixels lie partially in the background and partially in the object. At 
vertices the kind of intersection has to be defined for each type of intersection individually. The 
area weights the grey values, i.e. the grey value of a mixed pixel gm is computed from (remark: 
each pixel is considered to be of unit area): 

~ = A go + (1 - A) gb 

with: A: the area part of the pixel belonging to the object; 
go= grey value of the object; 
gb: grey value of the background. 

In the present investigation the grey value of the objects is set to 150 and that of the 
background to 50. 

Several shapes and sizes of triangles are used. The shape is defined by the angles: 
<P i' i = 1, 2, 3; L:<Pj = 1800 • To achieve an economical set up, the following angles are chosen: 

<p] <P2 <P3 

1400 200 200 

1200 200 40° 
1000 200 600 

800 400 600 

Six sizes are used. The largest linear extent is about 30 pixels, the smallest about 5 pixels. The 
triangle (1400

, 200 , 200 ) vanishes in the smallest size. So, the total configuration exists of 23 
triangles, shown in fig. 4. 

Fig .. 4 The configuration of the ideal image 
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3.2 Degradation 
The degradation of the artificial ideal image -blur, Gaussian noise and impulse noise- is 
simulated by computer. Some sources of blur are, e.g.: atmosphere, finite sensor apperture, 
optical aberrations and defocussing. It is assumed that the point spread function (PSF) of the 
imaging system, responsible for blur, can be approximated by a discrete 2-D Gaussian (i.e. 
statistical normal probability density) function. In digital integer domain a Gaussian PSF can be 
simulated by a repeated- convolution of the image with a 2 x 2 unweighted linear smoothing 
filter, gi ven by the mask: 

! ~ i1 
S0; th[e

1 
GaU;sia~JPSF of 3 x 3 window is: 

~ 2 4 2 
121 

Part of the noise is considered as additive zero-mean Gaussian N(O,O'), which simulates, 
among others, the thermal noise in electrical circui ts. The other p art of the noise is i rnpulse 
noise, simulating defective sensors. Noise caused by bit reversal during signal transfer is 
foreseen but not yet implemented. Both Gaussian noise and impulse noise are simulated by 
application of a random number generator. The effect of the above distortions on an ideal step 
edge is demonstrated in fig. 5. 

Ideal step edge blurring Gaussian noise Impulse noise 

'* + + If I 
--7 ( --7' 

~ 
~ 

5 Illustration of the present simulated degradations on an ideal step edge 

3.3 Figures of Meri t 
There are two principal criteria relevant to edge detection: 

- edgels should be well localized, i.e. the detected position between the ideal boundaries and 
the detected one should be as minimum as possible; 

- all relevant edgels should be detected and false edge detection should be avoided. 
Both criteria define the accuracy of edge detection. The first criteria refers to precision and 
the second one to reliability. Most former investigations on the accuracy of edge detection have 
considered the reliabili ty aspect. This paper emphasizes the precision. 

Before figures of merit can be given, first a definition about 'edge position' has to be given. 
Differential-type of edge detectors determine edgels just at pixel level. To achieve subpixel 
level, some kind of interpolation is necessary. The Prewitt and Sobel operator position the 
edgels at the mid point of the image pixel that corresponds to the mid pixel of the gx and g 
masks. Although the Normal gradient operator positions gx and gy at the boundary between th~ 
two involved image pixels (see fig. 3) also for this operator the mid point is choosen as 
representative point. 

Reliability measures Ri may look at the following edge detection characteristics: 
1 The ratio of the number of detected edges that are part of the ideal boundaries (Nd) to the 

total number of edges on the ideal boundaries (N i): 

:= 
Nd 
N. 

I 

2 The ratio of the edge positions which 
edges on the ideal boundaries (Ni): 

:= 

N 
w 

N. 
1 

are wrongly detected (Nw) to the total number of 



3 The ratio of the number of edges which coincide with the ideal boundaries (Nd) to the 
number of wrongly detected edges (Nw): 

= 

4 The ratio of some function of the number of edges which coincide with the ideal boundaries 
(Nd) and the number of wrongly detected edges ~Nw) to the total number of edges on the 
ideal boundaries (N i ). We propose the following measure: 

N. 
1 

a N w 

with a a weighting factor which depends on the importance of the effect of the number of 
undetected edges and of the number of wrongly detected edges on further processing. 

Defining dL i as the distance between the position of the detected edge and the ideal boundary, 
the following recision measures Mj are defined: 

1 The mean distance deviation) between the detected edges, coinciding with the ideal 
boundaries and the real posi tion of the boundaries: 

1 
= Nd 

~d 
L: 

i=l 
dL. 

I 

2 The variance, i.e. the mean of the squared distances (deviations) between the detected 
edges and the ideal boundaries: 

1 
= Nd 

Nd 
L: 

i =1 

The above figures describe precision and reliability separately. A figure which mixes both into 
one measure, is Pratt's figure of merit (c.f. Abdou and Pratt, 1979): 

1 
F = N 

a 

N 
a 

L 

i=l 

1 

1 + a (dL. )2 
1 

with: Na = max (Nd, Ni ) and a a weighting factor to provide a relative penalty between 
smeared edges and ISolated, but offset, edges. It is often set to 1/9 (Abdou and Pratt, 1979). 
F lies between 0 and 1; 0 is a bad and 1 a good figure. Peli and Malah (1982) have observed that 
Pratt's figure of merit isn't adequate, since it favours precision at the cost of reliability. This 
point is discussed in the next section. 

In the present investigation M1 is employed. None of the above reliability measures is 
applied explicitly, just Nd is listed. However, by comparing Nd with the number of detected 
edges coinciding with boundaries in the ideal image, a reliability measure is obtained. 

4 Experimental results and discussion 

The numerical results of the accuracy analysis are presented in table 1 and 2, and are 
further graphical presented in fig. 6-9. To fig. 8 and 9 belongs the following legend: 

Ideal boundaries superim- Ideal image convol ved edge image of ideal 
posed on ideal image con- with edge operator image corrupted by: 
volved with edge detector (edge image) - Gaussian noise (20) 
(edge image) - 5% impulse noise 

median filter applied on edge pres. fi iter applied on condo aver. filter applied on 
degraded image and degraded image degraded image 
and next convolved with and next convolved with and next convol ved with 
edge operator edge operator edge operator 
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Ideal image Impulse Mie 1 % 

no smooth. median edge-pres. condo no amooth. median 

ml n ml n ml n ml n ml n ml n 

P 0.40 1012 0.42 928 0.46 1116 0.40 993 P 0.43 1032 0.42 927 

5 0.39 990 0.42 924 0.46 1148 0.39 992 5 0.43 1019 0.42 922 

G 0.40 588 0.41 452 0.42 718 0.37 620 G 0.44 639 0.41 449 

Gaussian noise: sigma:: 5 Impulse noise 5 % 

no smooth. median edge-pres. condo no smooth. median 

m1 n ml n ml n ml n ml n ml n 

P 0.40 1005 0.40 873 0.46 1118 0.40 996 P 0.50 1140 0.42 943 

S 0.39 998 0.39 879 0.46 1159 0.40 1007 S 0.51 1162 0.42 938 

G 0.40 597 0.37 420 0.42 727 0.38 651 G 0.51 816 0.42 462 

Gaussian noise: sigma = 10, Impulse noise 5 % Gaussian noise: sigma = 10 

no smooth. median edge-pres. condo no smooth. median 

ml n m1 n ml n ml n ml n ml n 

P 0.54 1214 0.41 825 0.46 1043 0.48 1063 P 0.41 1031 0.39 624 

5 0.55 1225 0.41 851 0.46 1094 0.49 1077 5 0.41 1022 0.39 825 

G 0.53 862 0.44 394 0.48 766 0.45 719 G 0.40 624 0.39 374 

Gaussian noise: sigma = l~ Impulse noise 5 %, 81m 3x3 Gaussian noise: sigma = 20 

no smooth. median 

m1 n ml Cl 

P 0.58 785 0.30 315 

S 0.60 850 0.31 347 

G 0.77 262 0.60 10 

Legend to table 1 and 2 

P: Prewi tt operator 
S: Sobel operator 

edge-pres. 

m1 n 

0.40 722 

0.41 759 

0.49 568 

G: Normal gradient operator 

condo 

m1 
0.46 

0.45 

0.51 

no smooth. median 

n m1 n ml n 

539 P 0.45 1015 0.39 633 

577 5 0.44 1017 0.40 656 

197 G 0.52 792 0.38 216 

Table 1 

Gsu.ian 00186: aigme = 10; lmpul., noise 2 % 

no smooth. 3x3 Gauss. median 

ml n ml n ml n 

P 0.43 1068 0.41 998 0.40 834 

S 0.43 1064 0.40 994 0.40 855 

G 0.43 661 0.40 593 0.39 377 

Table 2 

edge-pres. condo 

ml n ml n 

0.46 H08 0.40 1005 

0.46 1140 0.40 1005 

0.43 730 0.37 607 

edge-pres. condo 

ml n ml n 

0.46 1081 0.44 1045 

0.46 1111 0.44 1042 

0.49 799 0.43 685 

edge-pres. condo 

ml n ml n 

0.46 1086 0.41 1006 

0.46 1134 0.41 1016 

0.41 715 0.40 674 

edge-pres. condo 

ml n m1 n 

0.46 1026 0.45 974 

0.46 1055 0.42 956 

0.44 689 0.48 674 

edge-pres. condo 

ml n m1 n 

0.46 1067 0.40 1004 

0.46 1110 0.41 1014 

0.41 711 0.40 672 

m1: precision measure 1: mean distance of detected edges to ideal boundaries 
n: number of detected edges which coincide with ideal boundaries (real edges); compare with 

Nd in text. 

The other abbrevations are self-contained. 



Table 1 shows that also for the ideal (i.e. non-degraded) image, the application of non-linear 
smoothing filters affect the number of detected edges on ideal boundaries (Nd) with respect to 
the non-smoothing case. The median filter decreases Nd considerably. The table shows that this 
is a general property of the median filter. 

Fi'g. 6 shows that the precision decreases for any type of differential edge detector with 
increasing impulse and Gaussian noise. Fig. 7 shows the behaviour of the non-linear smoothing 
filters under several impulse and Gaussion noise conditions. The median and edge preserving 
filter are consistent. The conditional average filter has median-like characteristics under low 
ndise conditions and evolves to edge preserving characteristics with increasing noise. 

0.6 

0.5 

. __ 5u/o 
impulse no ~se ___ ' 

-------------
O.4~--------------

0.3 

o 5 10 20 
sigma of Gaussian noise 

Fig. 6 The precislOn according to 
measure 1 (Mf) decreases for any type 
of differentia edge detector with in­
creasing impulse and Gaussian noise. 

The median filter shows the best precision properties. However, table 1 and fig. 8 and 9 show 
that many edges stay undetected, i.e. the median filter isn't reliable with respect to Ndo At the 
other side the number of wrongly detected edges is very low, i.e. the median filter is reliable 
with respect to Nw• 

The edge preserving filter augments often the number of detected edges, compared with the 
non-smoothing case, even for the ideal image. The filter preserves much more edges from 
corroding than the median filter, but also more edges are detected wrongly, as can be 
qualitatively verified in fig. 8 and 9. Furthermore, the edge preserving filter shows bad 
precision characteristics, although consistent. Even under very heavy noise condi tions it isn't 
remarkable less than in sligthly degraded irnages. Also Nd is largely indepent of noise 
condi tions. Under slight noise the condi tional average filter shows the best properties, for both 
precision and Nd properties. The filter has the drawback that it needs the adjustment of a 
threshold, which requires experiments. 

m
1 

d.6 

0.5 
(J/J impulse noise 

m
1 

0.6 

0.5 

0.(-) 

1% impulse noise 
.0.5 

------ --------------~ . ----;'-----.------.::.-;::.::: 

5% impulse noise 

0.4 ----• .----!!- -- 0 • 4 ~ - ------ (). 4 -t-----------__ 
siema of Gaussian noise siema of Gaussian noise si~ma of Gaussian noise 

O. 3 -1-----,-----.--------.0.3 -t----.----r--------r 0 . 3 -t----,----,--------, 

o 5 10 20 0 5 10 20 0 5 10 

• without: filter __ median filter ___ edqe-nreservincr conditionnl filter 
filter 

Fig. 7 Effect of non-linear smoothing on edge location precision 
with increasing Gaussian and impulse noise 

Under nearly noise free conditions, the Normal gradient operator shows the best results. The 
operator is small, determines just single edges and is computationally efficient. It is remarkable 
that even in case of 5% impulse noise the combination of Normal gradient and conditional 
averaging filter show a high precision, while the number of undete,cted edges is low. The 
disadvantage of this combination is however that many edges are wrongly detected as can be 
qualitatively indicated in fig. 9. So, the method is an appropriate one when boundary detection 
is carried out by search near ·an approximate boundary location. 
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Even under heavy noise conditions the combination of Normal gradient and edge preserving 
filter performs well. The Prewi tt and Sobel operator show nearly the same charact eristics, 
which is not astonishing when regarding the masks. In general, the choise of the smoothing filter 
affects much more the accuracy than the kind of edge detector. 

For Gaussian noise of sigma = 10 and 2% impulse noise, the effect of non-linear smoothing 
filters is compared with those of the 3x3 Gaussian smoothing filter (a linear filter). Even with 
rather strong noise linear smoothing reveals almost the same precision characteristics as the 
median filter: the precision is slightly improved. This observation corresponds globally with the 
one of Yang and Huang (1981), who have compared the effect of linear filtering on edge location 
of one-dimensional signals corrupted by impulse and Gaussian noise. They found that, in general, 
median filtering preserves step edges better than averaging, but that in the case of Gaussian 
noise, neither averaging nor median filtering improves the accuracy of step edges. 

The threshold on the edge magnitude is experimentally determined from the ideal image, 
separately for the three detectors. Since blurring causes smearing of the edges 0 ver se veral 
pixels and consequently decreases the edge strength, no thoroughly insight on the effect of 
blurring is obtained at present. 

Peli and Malah (1982) have observed that Pratt's figure of merit may give a high respc:rse 
even when the number of undetected edges is high. Furthermore, the squared distance dL i in 
the denominator, causes that small edges are preferred. So, the measure favours precision with 
respect to reliability. Our conclusion is that edge location accuracy can not be expressed by just 
one measure; it needs two measures, one for precision and one for 'reliability. As precision 
measure, the variance (M 2 in the previous section) has to be further investigated. In the pre­
vious section also a suggestion is given for a new reliability measure, which incorporates both 
the rightly and wrongly detected edges. 

5 Conclusions 

The edge location accuracy of the Prewitt, Sobel and Normal gradient operator in 
combination with non-linear smoothing filters are quantitatively and qualitatively compared 
under several noise conditions. Also comparisons with a 3x3 Gaussian filter are carried out. 
From the simulations executed on synthetic images, the following may be concluded. 

The median filter gives under heavy noise conditions the best results with respect to 
precision and wrongly detected edges. But many edges remain undetected. It should be used 
when wrong edge detection causes much more severe problems than a large number of 
undetected edges. For nearly noise free images with ideal step edges the normal gradient shows 
the best results. The Normal gradient has, like the Roberts' operator, a small size. PeB and 
Malah (1982) conclude from their simulations that the Roberts' operator is the best one to use 
for an image with a small amount of noise and rather steep ramp edges. Under heavy noise 
conditions the Normal gradient performs well, if the image is first preprocessed with the edge 
preserving or conditional average filter. So, small detectors are, in general, preferable to larger 
ones, but noise reduction by smoothing is necessary. 

Former investigations tried to express the accuracy in one type of measure, i.e. the 
precision is not separated from reliability. A separation between both is necessary. A new 
reliability measure is suggested. 
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