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1. The integrated geodesy approach

This paragraph is quoted with minor changes from Benciolini et. al (1986).

"Since about twenty years it has been realised by geodesists that a

theorical scheme allowing for the contemporarary determination of the

geometric quantities (e.g. station coordinates) and of the physical
quantities (e.g. the anomalous potential) related to geodetic observa-
tions, was needed". The same problems accours in the digital modelling of

elevations or displacements or other spatial variables (see fig. 1.1),

when:

- the surface is represented by a trend too;

- break 1lines are TJocated inside the area, therefore the correspondent

values should be suitably constrained;

- different subareas are processed together;

- the observations are functionally dependent on other non-stochastic

parameters.

"The traditional approach to the problem was to write geometrical
observation equations where the anomalous field entered only at level of
correcting factors computed by some questionable method.
The previous or subsequent least squares adjustment for geometrical
parameters was performed on the assumption of uncorrelated observations or
residuals. This, however, is not completely correct as the presence of the
anomalous field (or of 1its residual part) creates a statistical
correlation between the observed quantities. If that can effect the
estimated values of the coordinates, even stronger is known to be its
effect on the estimated covariance of the coordinates themselves.

The introduction of the collocation concepts taught how to treat this

statistical component as a signal. Whence a complete theory integrating

into a unique process the estimate of the geometric and field quantities
was proposed by Eeg and Krarup (1975); this was called the integrated
geodesy approach.

The theory of the 1integrated geodesy 1is schematically based on four

points: :

1) to write the observation equations and linearize them with respect to
all the unknowns, coordinates and field functions;

2) to interpret the anomalous field functions as stochastic processes with
some average invariance property with respect to a suitable group of
coordinate transformations;

3) to exploit the claimed invariance to estimate covariance and cross-
covariance functions of the processes, as well as of all their
functionals, via covariance propagation; ,

4) to apply the second order theory (minimum variance) to estimate unknown
parameters as well as the anomalous fields.

On theoretical ground this approach is a globhal one, aiming at the optimal

estimate combining all the available information.

On the other hand, on a pratical computational ground, the number of the

estimated parameters connot be very large, since its determination is from

a numerical point of view the same as the solution of a least squares

problem with a completely filled 1in covariance matrix." A first

improvement can be obtained by using finite covariance functions; however
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the classical solution causes often some computing troubles. A new
solution was found by the ITM team and it is first time here discussed and
tested; the authors inform that a similar solution was proposed recently
by the geodesists of the Universidad Complutense of Madrid (Spain).

2. The least squares collocation method with additional parameters

The observables a are linked to the signal s and to the additional
parameters x by a functional model:

E(a) = Ax + Bs (2.1)

more over a stochastic model connects the observables among the signal,
via covariarnce propagation:

D(a) = BC  B' + o° p~l (2.2)

being C__ the covariance matrix of the signal, P the diagonal matrix of
the weigﬁ%s of the observables and o % the variance of the noise.

Since the observations a_  are linked to their expected values o by the
residual noises n: °

@ = a-n (2.3)

the expression connecting the observations a_ to the estimations of the
signal s and of the additional parameters X becames:

o, = AX + Bs + n (2.4)

This is the <classical formulation proposed by H. Moritz (1959).
Unfortunately this solution gives some computational troubles.
Nevertheless an advantageous trick allows for solving this troubles.

The trick consists in considering the additional parameters as a component
of the signal:

s = [ s (2.5)

Therefore the functional model is redefined according to the new position:
B=[B A] (2.6)

and the stochastic model is consequently modified in the following way:

C_=|C._ 0 (2.7)

where H is a diagonal matrix with the principal elements suitably large.
Thus by using the least squares principle:

1208 @7 et o |[s ] +A'(BS + A - a) = min (2.8)
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being A a vector of Tagrangian multipliers, the estimation of the filtered
signal containing the additional parameters too, is achieved:
s = | -1 | - 2 i 1 2 | -1 1
s = (B'PB) ~ B Pao o, (B PBCSs B'PB + o, B'PB) B Pao (2.9)
Note that some theorems of 1linear algebra must be used to obtain this
expression.
The expected values of the observations and the residual noises follow
according to (2.3) and (2.4) respectively.
In the same way the estimation of the predicted signal is achieved:
- -1

- ] | | 2 1 '
sp Cs SB PB (B PBCSs B'PB + o, B'PB) ~ B Pao (2.10)
Note that the predicted signal doesn't contain additional parameters,
being their cross-covariance matrix identically equal to zero.
A1l the estimations are unbiased and of minimum variance among the linear
estimators.
The covariance propagation furnishes the covariance matrices of the
estimation error of the filtered signal:

=~ 2 ! -1 - L 1pR 1 2 pt -1 ,
Cee o, (B'PB) o, (B PBCss B'PB + o, B'PB) (2.11)
of the estimation error of the predicted signal:
-1
C =C - C B'PB (B'PBC__ B'PB + ¢_2 B'PB) ~ B'PBC (2.12)
epep spsp sps ss n ssp

of the expected values, considering the stochastic properties of the
signal:

C&& = BCee B (2.13)
and of the residual noises:

-1
_—— = 2 - .
Cnn o, P Caa (2.14)
These matrices are important for the analysis of the results.
The variance of the noise can be a posteriori estimated and the resuld can

be used for a global judgment:

Enz =n'Pn / k (2.15)
where:
k=m=n+Tro pl/2g (B'PBC__ B'PB + o 2 B'PB)” g pl/2

being:

m the number of the observations;
n the dimension of the signal, including the additional parameters too.

In conclusion of this paragraph the trick can be justified from the
numerical point of view.

Indeed by using finite covariance functions, the covariance matrix of the
signal becames sparse; moreover the sparseness is conserved in the
matrices of the expression (2.9), since these ones don't contain inverse
matrices.

Therefore no expression presents computational difficulties, but for the
(2.12) one that is often omitted for sake of brevity.
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Note that a finite covariance function is obtained by the product of a
covariance function and a positive definite spline function.

3. The DEM test example
A program INTGEOC was implemented not only to test the new solution, but
also as a flexible service program of general interest.
Therefore the program accepts as input files the design matrix , the known
vector, the weights vector, moreover the covariance matrix of the signal
and the variance of the noise. The solution is performed by using a
preconditioned conjugate gradient algorithm; a special subroutine allows
for computing the product of three sparse matrices, since finite
covariance functions are used. As output files the program furnishes the
solution and some information about its precision and accuracy.
A part of the Noiretable test area was chosen as a DEM test example. Its
prevalent surface is a plane, moreover both a regular roughness and an
irregular one modify the topography. The fig. 3.1 shows the 3D
rapresentation of the DEM test example observations.
Its covariance function doesn't look as one of a stationary stochastic
process (see fig. 3.2). Therefore a linear trend was removed; a new
covariance function was estimated by using the obtained residuals (see
fig. 3.3) and the filtering of the signal from the noise was computed.
Since the new covariance function looks as one of a stationary stochastic
process, good results are achieved by the filtering. Indeed the shape of
the residual noises is quite smooth, as shown in the fig. 3.4 by means of
a contour line map. ,
The new procedure was started at the end of the first one performed in two
separate steps. In this plase the previous estimations of the trend
parameters and of the signal were added to the original system as new
indipendent data of suitably low weights, in order to obtain a better
numerical stabitity. Moreover, since both the filtered signal and the
trend parameters must be considered as signal, the stochastic model should
be consequently modified by adding suitably Tlarge principal elements to
the covariance matrix of the signal according to the position (2.7).
Thus the new solution was computed by means of the program INTGEQ; in such
a way one obtained:
- the filtered signal, containing the additional parameters too, and the
standard deviation of the estimation errors;
- the expected values of the observables and their standard deviations,
considering the stochastic properties of the signal;
- the residual noises and their standard deviations;
- the a posteriori estimation of the standard deviation of the noise.
The fig 3.5 shows the contour line map of the residual noises. Note that
the shape of the residual noises is quite smooth again; moreover the high
simularity between the residual noises derived from the classical procedu-
re in two separate steps and the residual noises obtained from the new
unique solution is impressive. Indeed the values of the differences
between the two samples of residual noises are always close to zero, as
shown in the fig. 3.6 by means of a contour line map.
Finally the fig. 3.7 shows the 3D rapresentation of the DEM test example
predicted signal, which obviously reproduces the observations but for the
residuals noises.
Since good results were achieved, the first test of the new solution
should be considered satisfactory; however the numerical sensitivity of
the new solution from the arbitrary values of the weights of the previous
estimations and of the fictitious variances of the additional parameters
is remarkable.
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Fig 3.1 - 3D representation of the DEM test example observations
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Fig. 3.4 - Contour line map of the residual noises (two steps procedure)
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Fig. 3.5 = Contour line map of the residual noises (unique procedure)
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Fig. 3.6 - Contour line map of the differences between the two samples of
residual noises

Fig. 3.7 - 3D representation of the DEM test example predicted signal
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4. Some general considerations

The good results achieved by using the integrated geodesy approach applied
to digital modelling allow for some general considerations.

Where is geodesy going?

What is the role of photogrammetry in the geodetic and cartographic
sciences?

The aim of theoretical geodesy is to study the figure of the earth and its
time variations both from a geometrical point of view and with respect to
the gravity field. Surveying and modern satellite geodesy follow the
geodetic developement also for historical reasons; moreover their news
suggest new topics to theoretical geodesy.

On the contrary photogrammetry has been for a long time more separated
from geodesy, but modern space photogrammetry and remote sensing now ask
for closer conctats. Indeed the global reference frame must be derived
from geodesy; however not only photogrammetry is calling geodesy, but also
geodesy is calling photogrammetry.

In fact only the photogrammetric observations give a permanent docu-
mentation and furnish a dense point positioning, which can be used in
several dynamic problems. ,

Last but not least the experience of the ITM team in many fields of the
geodetic and cartographic sciences confirms that the advantages of using a
unique common methodological background are very big indeed.
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