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The paper describes a concept for model based location of house roofs as 
topographic control points in digital or digitized images. The control 
points are described by hand drawn orthographic sketches. The paper deals 
with the interpretation of the sketches, the extraction of straight line 
segments from the image and the use of the uncertainty of model and image 
features within the matching procedure. 

0 .. Introduction 
Control points play a central role for absolute orientation of aerial 

images, in aerial triangulation and for rectification of satellite imagery. 
They form the link between the geodetic reference system and the measure­
ments taken from images and essentially are needed for the indirect deter­
mination of the orientation parameters of the sensor platform during the 
flight mission as long as these parameters cannot reliably be determined 
directly, e. g. using the GPS-Navstar system or inertial systems. 

The identification of control points is usually performed by a human 
operator taking advantage of his interpretation capability especially if 
natural control points, such as buildings or roads are used. In the course 
of automating image analysis tasks using digital image processing tech­
niques also the detection and location of control points has to be automa­
ted. While this demand is obvious for the rectification of satellite image­
ry, where control point identification still is a burden, automatic control 
point identification could also be advantageous for the absolute orienta­
tion of aerial images in order to avoid aerial triangulation. This of 
course is only of practical value if natural control points are available. 

This was the motivation for the survey department (Landesvermessungsamt) 
at Bonn to establish a control point data base for their orthophoto produc­
tion, which aims at a periodic update of the orthophoto maps every five 
years. The data base consists of more than 20 000 natural control points, 
mainly being pairs of gable points of house roofs with their X-, Y- and 
Z-coordinates and a description in the form of a sketch of the roof in or­
thographic projection. The density is high enough that in the largest part 
of the area for each photo (scale appro 1 : 12 000) at least 6 to 8 points 
are available for absolute orientation. Together with the stored Digital 
Elevation Model this information is sufficient for orthophoto production 
without requiring an aerial triangulation. 

The task of control point identification and location is a well defined 
one in this case, which was the reason to start an investigation how the 
task could be automated using techniques from image processing, pattern re­
cognition and artificial intelligence. The task is similar to object loca­
tion in robotics in case a CAD-model is available to identify objects on a 
conveyor belt with a digital camera, a tactile sensor or a laser ranger 
(cf. GRIMSON!LOZANO-PEREZ 1984, 1987; FAUGERAS!HEBERT 1987, HORAUD 1987). 
CAD-models as well as the models available in the mentioned control point 
data base are specific models, fixed or at least known up to a few parame­
ters, e. g. the slope or the width of the roof planes. Also orientation pa-
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rameters may be unknown. Thus a few ~~mer~~al parameters may have to be de­
termined or estimated during the identification and location of the ob­
jects. 

The task thus differs significantly from automatic mapping. Here g§~~ric 
models are necessary, which do not only allow numerical parameters to vary 
but also relations between the geometric primitives to vary according to 
some rules. Such a generic model may e. g. describe all closed polygons 
with rectangles, where except for the orientation and the lengths of the 
edges also the number of the edges may be arbitrary. An even more complex 
generic model for buildings has been developed by FUA and HANSON (1987). 

An example wants to show the principle of our approach. Fig. la shows a 
digitized subsection of an aerial image containing the house sketched in 
Fig. lb. The two gable points are given with their 3D coordinates and are 
the actually used control point pair. Fig. lc and ld show the 3D-model and 
the model projected into the image. This projected model is to be found 
among the extracted straight edges shown in Fig. Ie. The bold lines indi­
cate the solution of the match from which by a fit of the model to the 
image edges the position of the two gable points can be derived. The aim in 
this preliminary test on the feasibility of an automatic control point lo­
cation procedure was to find an optimal solution in the sense that for all 
model edges the longest image edge had to be found. The test criteria for 
selecting the matches were not taking the geometric properties and the un­
certainty of the edges into account. This resulted in clear deficiencies of 
the procedure, as the effect of the chosen thresholds onto the result could 
not be predicted and the quality of the result, i. e. the resultant coordi­
nates could not be evaluated before the final decision using an intuitive 
measure. This experience, together with the successful identification of 
the correct image edges was the motivation for the more thorough statisti­
cal setup discussed in this paper. 

The paper deals with the identification of 3D objects in images for 
which a specific model is available. As the concept has been developed on 
the background of the .entioned task of control point location it was based 
on the following line of thought: 
- The task is to locate the object, i. e. determine its position, possibly 

its orientation in the image or in object space. The task is not to re­
cognize the object among a given set of objects, though it can be adapted 
to this task. 

- The model consists of a list of ed~.~ including single points as a spe­
cial case. This list needs not completely describe the object. The edges 
are represented by point pairs. 

- The model may be uncertain. The type and degree of uncertainty has to be 
given explicitely or derivable from the geometry of the model. 

- The model may contain symmetries or other crisp geom~Jr1c con.gi tions, 
such as angles being 0 0 (parallel) or 90 o. 

- In case the model is only given by a 2D projection the 3D structure of 
the model has to be derived automatically from the projectio~ in general 
leading to a set of valid 3D-models. Heuristic conditions have to be used 
to reduce the ambiguity and for a ranking of the 3D-models according to 
their likelihood. 

- The model edges are to be matched with edges extracted from the image 
using a heuristic search procedure. 

- The uncertain~f the image edges has .J.Q~deti_y.~g ... JJ..Q!Il._!Jte ungertain!y 
of the intensity values taking the applied extraction procedure into ac­
count. 

- The location procedure should contain :;;.~:lfdia..9:!losi~~a~~J~Jli t.Y!.. Thus the 
quality of the determined position and/or orientation has to be evaluated 
and be given in an intuitive form. 
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The paper gives an outline of the concept for solving this task. In de­
tail the following steps are discussed: 1. Interpretation of the 2D sket­
ches, 2. Geometric 3D-models and their projection into the image, 3. Ex­
traction of straight edges, 4. Representation of uncertainty, 5. Matching 
criteria, and 6. Matching procedure. 

Fig. 1 Example for matching roof model to image edges 
a. digitized section of aerial image, 5 x 5 mm2, 240 x 240 pixels 
b. sketch of roof in control point data base 
c. 3D-model of roof 
d. projected model in image plane (not in scale) 
e. extracted straight edges, matched edges: bold lines 

(1.. 

b. 
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1. Interpretation of the 2D sketches 
Interpretation of line drawings is a classical task in artificial intel­

ligence (cf. e. g. the overview in BRADY (1981)). Our problem is much simp­
ler than labeling a general view of a polyhedra, as we have more a priori 
knowledge, specifically the known projection of the sketches and the clas­
sification of the lines within the sketches. 

Fig. 2 shows 4 representative sketches from the control point data base. 

Ill
, / 2. If 

Ie 
s b I 

.., 3 
a. 

Fig. 2 

b. c. 

Sketches from the control point data base 
o points with known ground coordinates 

edges representing vertical walls 
" II intersections of roofs 

The following observations hold for nearly all control points and thus are 
used as restrictions for the identification process: 
- The circumscribing polygon only contains rectangles. 

The polygon may be uncomplete (cf. Fig. 2b). 
The sketches do not contain any information on the slope of the roofs. 
The sketches can be split into nonoverlapping basic units representing a 
part of the building and having no full lines inside the circumscribing 
polygon (cf. Fig. 2b) 
All nodes in the graphs of the basic units have order 2 or 3. 
The sketches are not in scale, though approximately representing the geo­
metry correctly. 
Crisp geometric conditions (angles, symmetry) can be derived from the 
sketch. 

We assume that the sketches have been digitized and the graphs of the 
sketches are available including labels for the control points, the edge 
types and the node coordinates. 

The reconstruction of the 3D form of the roof obviously is not unique. 
We discuss the reconstruction procedure for the ~ost simple case of Fig. 
2a. The generalizations are discussed in a separate publication. Fig. 3 
shows several valid 3D interpretations of Fig. 2a. 3a is the most likely 
one, 3b-3e are possible, 3f is very unlikely, 3g-3i are possible but not 
very likely, 3j is extremely unlikely and 3k is impossible. 

Fig. 3 3D interpretations of Fig. 2a (r\4)t in sC'lle.) 
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The different interpretations of the roof obviously correspond to diffe­
rent interpretations of the nodes and the edges resp. Specifically in this 
case the roofs a to h directly correspond to the labeling of node 1 in Fig. 
4b. There also an example for empirically derived probabilities is given 
for node 1 and 3 which may have been obtained from a training set. Only the 
sign of the slope of the edges, as seen from the node is used in this re­
presentation. 

node 1 a b c d e f g h 2: + 0 

1 

~ - ~ 
1 0 + 0 + + 1:+ 0 .05 0 
2 0 0 + + + 0 .05 .05 

2 3 0 0 0 0 0 0 0 0 0 .05 .8 

node 3 2: + 0 

1 

~ 
1:+ 0 .15 0 

0 .15 .4 .15 
0 .15 0 

a. b. c. 

Fig. 4 a. Node representation 
b. Interpretations of the edges at node 1 

(0 :: horizontal, + :: ascending, - :: descending) 
c. Example of empirical probabilities for edge labels 

(for node 1: 3 :: o. The cases 3 :: 0 and 3 :: - contain O-proba-
bilities, - :: invalid labeling) 

The interpretation now can be achieved by labeling the edges at the 
nodes, starting with that node which leads to the most certain decision. 
This labeling actually is a depth first search in an interpretation tree 
using heuristic information to guide the search (cf. GRIMSON/ LOZANO-PEREZ 
1987). 

The certainty can be measured by the deviation of the probability 
distribution from an equal distribution, being the worst case. This devia­
tion is the relative redundancy R(~) of the decision ~ 

R(~) :: (Hmax - H(~»/Hmax :: 1 - H(~/Hmax 

where H(~) is the entropy of the decision, i. e. the expectation of the in­
formation I(~::x) :: -In(p(l::x)) obtained when being told that the labeling 
is ~:: x. Hmax is the upper bound on H. 

n 

H(~):: I -p(x1)-ln(p(x1), Hmax :: In{n) 
1=1 

n is the number of alternatives of the decision. Here R1 :: R2 :: 1 - (-4-
O.05-ln(O.OS)-O.8·ln(O.8»/ln(27) :: 0.764 and Ra :: R4 :: R~ :: R6 :: 1 - (-4-
0.1S·ln(0.lS)-0.4·ln(0.4)/ln(9) :: 0.315. Therefore node 1 (or 2) should be 
labeled first, leading to the most probable interpretation (-,-,0). This 
decision can now be propagated until all nodes have been processed, either 
using geometric constraints (especially parallelism of lines belonging to 
one plane) or further heuristics, as used in the first decision. In this 
case conditional redundancies can be used as parts of the edges belonging 
to one node already are labeled. The likelihood of the total interpretation 
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then can be approximated by the negative information content L = -r I(xj) = 
I In(PJ) of the free decisions at the nodes, which needed heuristics, neg­
lecting mutual dependencies between these decisions. This likelihood would 
be La = In(0.8) = -.223 and Lb = In(0.05) = -2.996 for the interpretations 
2a and 2b resp., as the first decision, namely for labeling node 1, was un­
certain while the labeling of the other nodes could use geometric con-

shows ion 2a to be more likely than interpreta-
as could be expected. Putting a lower bound on the likelihood of 
interpretations or onto the number of interpretations leads to a 

of then can be used as a basis for the 

2. the image 
symbol descriptions of 

measures. The planimetric coor­
from the sketch coordinates and 

the control points. As the height of 
the control points are known of the remaining nodes have to 
be determined. This can be manner: 

1. all nodes connected by edges with those already as-
signed a to. these nodes the same as those of the 
nodes with are connected to. 

2. If nodes are left, do not have a height, choose one of them 
linked to a node th a assigned to it, choose a cer-

tain height difference for the edge, calculate the height of this new 
node and goto 1, else stop. 

In case the graph is connected all nodes will obtain a unique height. 
Moreover the procedure also the type of between the heights and 
therefore the type of geometric condition: crisp for node pairs with the 
same height, weak for node th fferent heights. 

As the height differences or the slopes are not given, height differen­
ces or slopes are treated as random variables with a large standard devia­
tion which will be used to derive the covariance matrix of the 3D-model 
(cf. section 4). Symmetries can easily be applied in this procedure, in ge­
neral reducing the number of height differences to be chosen is step 2. 

The 3D-model is now projected into the image. This is possible as appro­
ximate values for the orientation parameters of the image are known from 
the flight . The Xo- and Yo-coordinates of the projection centre are 
accurate up to 1 cm the image. The f height Zo is known with an ac-
curacy of about 10 % and the orientation angles can be assumed to be known 

a standard of a few 0 With approximate values 
the 3D-model can be projected into the image plane. Taking the uncertainty 
of the orientation parameters Zo, Of ~ anf K into account also the cova-

matrix of the ected model can be derived by error propagation. 
The of the the Yo too to be repre-

. Therefore the of the projected 
assumed to be free within the matching process. We only 

assume that the house can be found in the 1 cm-neighbourhood of the projec-
ted model, an area of appro 2 x 2 cm 2 to be digitized. The result 
of this step thus the projected model consisting of a list of model ed-
ges in the image coordinate system together with the covariance matrix of 
the coordinates of the endpoints. 
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3. Extracting straight edges 
There exist several techniques for estracting straight edges from digi­

tal images (cf. e. g. BURNS et. ale 1986, NEVATIA/BABU 1980). We apply a 
different technique which is theoretically related to the operator for ex­
tracting distinct points proposed by FORSTNER (1986, cf. FORSTNER/GOLCH 
1987). The choice of the feature extraction algorithm should not have a too 
high impact onto the result but provide information on the quality of the 
extracted edges. All schemes for straight line extraction known to the au­
thor may provide this type of selfdiagnosis though they not all actually 
have exploited this possibility. 

Our algorithm consists of the following steps (cf. FORSTNER 1988): 
1. Determination of the normal equation matrix N for determining the op­

timal edge position from the following equation system N Y = h 

where the sums are taken over a small window, usually 3 x 3 pixels. 
2. Determination of the strength s = trN and the likelihood q = 4- detN 

l(trN2) of the edge. q lies in the range between 0 and 1, q = 0 repre­
senting a 100 % anisotropic texture, thus suggesting an edge. 

J. Extraction of edge regions given by all pixels with s } ts and q < t q • 

The threshold ts can be related to the noise of the intensity values 
g. A reaonable threshold for q has proven to lie in the range between 
0.5 and 0.7. 

4. Extraction of edge pixels by determining the local relative maxima in 
row or column direction. 

5. Determination of the edge elements (edgels) the neighbourhood of 
the edge pixels. One point of the straight line of the edgels can be 
determined from the above mentioned equation system, whereas the di­
rection $ can be determined from ~·arctan(2·N12/(NII-N22». The posi­
tion of the edge 1 then is the point on this line lying nearest to the 
centre of the the edgel represented by its sub-
pixel position, its orientation ., its s and likelihood 
q. 

6. Merging the edgels to straight edges recursively by a "line-growing" 
process on the 8-connected components of the edgels. The straight edge 
is represented by the first two moments m and M of the used edgels and 
the circumscribing rectangle. Starting with the edgel with the highest 

Fig .. 5 Representation of edge and local coordinate system (u,v) 

strength a neighbouring edgel is merged into the straight line if: 
a. its orientation $ is close enough to the orientation a of the ac­

tual edge (e. g. la-~I ( 45 0) .. 
b. its distance d to the actual is small enough (e .. g. Idl ( 1 

pixel) and 
Co the smaller eigenvalue ~2 of HI representing the strength of the 

actual edge, will not exceed a .. g. ~2 ( 1 
xel 2 ) .. 
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The final edge then is described by its endpoints which are the two 
points on the straight line closest to the corners of the circumscri­
bing rectangle. 

Remarks: 
a. Extraction of edgels and the connection scheme are independent and can 

be replaced by any other algorithm. 
b. A hysteresis type of thresholding (cf. CANNY 1986) can easily be inte­

grated into the line growing process. 
c. The use of subpixel estimates for the position of the edges significant­

ly improves the resulting edges, especially the short ones. 
d. In case the signal to noise ratio of the image is Iowan information 

preserving filter should be applied to suppress noise while keeping ed­
ges and corners (cf. FORSTNER 1988). 

4. Representation of Uncertainty 
In this application both, model and image edges, are uncertain due to 

inevitable errors in the generating process. It is crucial for the matching 
process to exploit this uncertainty in a consistent manner especially to 
achieve results which are independent of the sequence of the path in the 
tree search and to reduce decision errors due to inaccurate thresholds in 
the tests. The most appropriate way to achieve this goal is to treat the 
measurements as realizations of random variables and use the second moments 
of their distribution as representation for their uncertainty. This gives 
rise to simple ways for keeping track of the uncertainty by error propaga­
tion and to statistical tests of the equality of the geometric descriptions 
if an assumption on the type of distribution is made. This in our case will 
be the Gaussian because of both the central limit theorem as the principle 
of maximum entropy. We also can assume that within the matching process the 
approximate values are precise enough to be able to neglect the effects of 
the nonlinear relationships and use the linear surrogate models for the 
tests. The same arguments have been used by SMITH et. ale (1987a, b) for 
their "stochastic map" describing the uncertainty of the positions and 
orientations in robot path planning. 

4.1 The uncertainty of the model 
The uncertainty of the model depends on 

a. the accuracy of the sketch, 
b. the uncertainty of the slope(s) of the roof(parts} 
c. possibly on the validity of geometric constraints derived from the 

sketch 
d. the accuracy of the approximate values for the orientation parameters 

of the sensor platform. 
The uncertainty of the projected model is represented by the covariance ma­
trix of the coordinates of the nodes. 

An example wants to demonstrate how this covariance matrix can be de­
rived. Let us assume that 

a. the interpretation yields the information that the roof shown in Fig. 
2a consists of two rectangles in symmetric position. 

b. the length-ratios between the width b and the length 1 of one of the 
rectangles have a standard deviation of 10 %, 

c. the assumed height difference in the roof be h with a standard devia­
tion of 30 %. 

Starting from the given sketch points PI (0,0,0) and P2 (0,1,0) the points 
Pa to Ps are given by 

III 1 



where stochastical variables are underlined, namely band h having standard 
deviation Ob = 0.1 band Oh = 0.3 h resp., band h being the approximate 
values for ~ and h resp. As only two random variables are involved the rank 
of the 18 x 18 covariance matrix for the 18 coordinates of the 6 points of 
the 3D sketch model has rank 2 and is very sparse. Observe, that the 
heights and the y-coordinates of the points P3 to P6 are correlated 100 %. 
By a spatial transformation with five degrees of freedom (3 shifts, 1 rota­
tion, 1 scale) using the given coordinates of the two gable points the 
other points can be determined together with the 18 x 18 covariance matrix 
of the 3D-model. The 5 parameters can uniquely be derived taking the iden­
tity of the heights for the gable points into account. The projection of 
these 6 points into the image with the 6 orientation parameters (Xo, Yo, 
Zo, 0, $, K) of the camera yields 12 image coordinates, together with their 
covariance matrix. Here only Zo, 0 ,$ and K need to be treated as random 
variables with appropriate standard deviations (e. g. OZo = 0.1 Zo, On = Ot 
= OK = 3 0, which is a pessimistic assumption). The resulting 12 x 12 cova­
riance matrix i. g. has rank 6. Observe that this covariance matrix actual­
ly represents the non-rigidity of the model and the uncertainty,of the ap­
proximate values for the orientation parameters. 

4.2 The uncertainty of the straight edges 
The uncertainty of the straight edges extracted from the image can be 

derived from the extraction process itself. The final result of straight 
edge segment, as described in sect. 3, actually results from fitting a 
straight line through a set of edgels taking the individual weights Wt = s 
into account. In a local coordinate system (u,v) (cf. Fig. 5), which lies 
near the principle axes of the edgels, the covariance matrix for the para­
meters a and m of the straight line v = a + m u is diagonal and given by 

where Q02 is an estimate for variance factor 

" A A 
Q:o 2 = I Wt (yt -.! - !l Ut) 2 / Cn - 2) = t:!.2 / (n-2) 

where the sums are taken for all n edgels. The uncertainty of the u-coordi­
nate in this calcuation can be neglected. The v-coordinates of the end 
points will be correlated due to the common factor ~. The u-coordinates 
have an accuracy which can be explained merely by r~unding errors, thus can 
be treated as uncorrelated with standard deviation ou = 1/112. This assump­
tion will be modified in sect. 5. Thus the covariance matrix and the weight 
matrix of the coordinates of the starting and the end points of the edges 
in the individual (u,v) coordinate system have the following structure: 

y,s Ous 2 0 0 0 Wus 0 0 0 
.Is 0 Ovs 2 0 Ovsve 0 Wvs 0 Wvsve 

C = D = , W(U,v) = 
!!e 0 0 Oue 2 0 0 0 Wue 0 
ye 0 Ovevs 0 ave 2 0 Wvevs 0 Wve 

Transforming the edge back into the image coordinate system yields the co-
variance and weight matrices 

D <£s, .£s, !.e, £8) = R • C • RT w< r , c) = R • W< u , v) • RT 

with the rotation matrix R depending on the direction $ of the individual 
edge 
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Rt = 
[ 

cos~ 

-sin<l> 
Sin<l>]. 
cos<l> 

5. The Hatching Criteria 
The ultimate goal of our task is to determine the position of the two 

control points or just one of them. A reasonable requirement is this loca­
tion to be reliable in the sense that inaccuracies of model or image edges 
on one hand and false matches on the other hand do not deteriorate the 
coordinates of the control points too much. This notion of reliability has 
been developed by BAARDA (1967, 1968) for the use in geodetic networks, a 
review of the theory is given by FORSTNER (1987). We will use it here as a 
check whether the search for further matches between model and image edges 
can be terminated or not. As this test in principle has to be performed at 
all nodes in the search tree, we will elaborate on it separately from the 
discussion of the search strategy_ 

Assume a certain list of matched edges {(ak, bk)} is hypothesized to be 
acceptable then we can determine the optimal transformation T with parame­
ters y using the nonlinear model 

or after linearization 
A 

! + Y = A If Cxx 

with 
~ = (~k)T the vector of the observations 
~k = T (§k; p ( 0 » - 11k 

the differences between image edge and predicted model edge 
p(O) approx. values for the transformation parameters 
!k, ~k the 4 coord. for the model and the image edge resp. 
!) the corrections to the observation ~k 
A the partial derivatives of T with respect to the unknown pa-
~ rameters y 
I the unknown corrections of the parameters p 
Cxx the covariance matrix of the observations ~k 
The transformation in our case simply can be assumed to be a shift in 

row- and column-direction. Then the approximate values for the other orien­
tation parameters influence the tests. Thus alternatively, their influence 
could be eliminated by introducing them in the transformtation T, e.g. in 
case one is not sure whether the assumed standard deviations are chosen 
large enough or if one expects the deviations to be too large. 

The covariance matrix Cxx consists of two parts: Cxx = Ce e + Cbb. Caa 
represents the covariance matrix of the transformed model edges which can 
be derived by error propagation after linearization of T. 

Cbb needs some elaboration. It represents the precision of the image 
edge 11k, under the assumption that the model holds. Here one has to consi­
der the fact, that model edges not necessarily completely show in the 
image. Actually only four cases are of interest which are shown in Fig. 6. 

Obviously a test on the identity of starting and end points based on pa­
rameters derived so far has to be performed first in order to classify the 
type of match. This test can be split into two phases and refers to the lo­
cal (u,v) system of the edge: 
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s(m) E(m) 

0----00 

0-------0 
5(1) E(1) 

a. 

scm) E(m) 

0-----0 

0----0 
S(1) E(1) 

b. 

s(m) E(m) 

0---0 

0-----0 
S(1) E(l) 

c. 

sCm) E(m) 

0---0 
0---0 

S(i) E(l) 

d. 

Fig. 6 Possible matches between model and 
image edge (0---0) 
a. s(m) ::: S(1), E(m) ::: E(l) 

b. s<m) ::: S(1), 1) between 5<m) and E(m) 

c. E(m) ::: E(l), S(1) between s<m) and E(m) 

d. S(1) and E(1) between s(m) and E(m) 

a. test of v-coordinates (across the edge). If not of 
the image are close enough to the 
is rejected. 

b. test of u-coordinates (along the ). 
- test on the identity of the u-coordinates for both points 
- classification of the link at starting and end point according to 

Fig. 6. Thus if the image icantly juts out over the pre-
dicted model edge at at least one side the match is rejected. 

In case one of the two end points of an accepted image edge is proven to 
lie between the endpoints of the model edge the standard devia-
tion for the u-coordinate of that point is set to a high value (e. g. 103 ) 

or the weight is set to O. This modification of the covariance matrix or 
the weight matrix reflects the fact the point in concern only being linked 
to the model edge with its v-coordinate and leaves the structure of the ac­
tual estimation procedure unchanged. 

Now the checking at each node can be described in the following way: 
1. Generate a valid partial solution based on heuristic information (cf. 

sect. 6). This consists of a list of already accepted matches {k} ::: 
{(~k, ~k)}, which is to} in the beginning, and a new match 1 ::: (!l I ~l). 

2. Classify the new match 1 according to the discussion on Fig. 6. If the 
match is rejected goto 1, else continue. 

3. Check the validity of the global match including 1 using the total fit 
of the model and the image edges. If this test fails eliminate the rea­
son and goto 1, else accept the match 1 and continue. 

4. Determine the reliability of the control points with respect to mismat­
ches. If the reliability is not sufficient goto 1 else stop. 

Remarks: 
a. The check in step 3 can be omitted one can rely on the checks of step 

2, which usually is the case. 
b. The rejection of the test in step 3 may result from wrong matches which 

however have passed the tests earlier. Thus a rejection of this test may 
lead to a test on (possibly all) matches with the possibility to 
reject one or several of them. 

c. The reliability of the result can be based on the theoretical sensitivi­
ty (~o·ay), which is known to be an upper bound of the effect of non de­
tectable errors onto the estimate y. It can be based on two different 
sets of alternative hypothesis: 
1. Complete matches are assumed to be wrong, thus all coordinates of one 

match are treated as a "joint observation" (5ARJAKOSKI 1986). This is 
a straight forward line of thought. Here the sensitivity measure ans­
wers the question: To what extent (in pixels) can the resultant coor­
dinates change if an undetected matching error in 9J1e.. of the matches 
occured? This is an intuitive "what-happens-if of test. The 
theoretical can be from the of 
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the multivariate version of the reliability theory (cf. FORSTNER 
1983, 1989). 

2. If only individual coordinates are assumed to be contaminated by er­
rors, thus the matches are assumed to be correct, the numerical pro­
cedure is simplified. How far the actual values differ from case 1 
needs special investigations. 

6. The Matching Procedure 
The matching procedure consists of a backtracking tree search (cf. 

SHAPIRO/HARALICK 1987) or an exploration of an interpretation tree (cf. 
GRIMSON/LOZANO-PEREZ 1987) which is shown in Fig. 7. 

(0) 

(at t ,btl) 

Fig. 7 Interpretation tree 

Each node in level I represents a possible match (amI,bmI ) between a model 
edge ami and an image edge bm1 • The path from the root node to a node in 
level n in the tree represents the above mentioned list of hypothesized 
matches {kJ = {ak,bk)} with k = (m l ) and I = 1, •.. /n. The complexity of the 
search is exponential if no heuristics is used, specifically if we have m 
model edges to which i image edges may correspond the tree has m1 nodes. 

The search can heavily be reduced if not all nodes have to be explored. 
This can be achieved by sorting the model and the image edges according to 
their importance for the determination of the cooordinates of the control 
points and by exploring the tree in a depth first manner, which then cor­
responds to a best first strategy for finding the solution. As sorting cri­
terium for the model edges again the theoretical sensitivity with respect 
to potential mismatches can be used, as model edges with a potentially high 
influence onto the result should be treated first. The sorting criterium 
for the image edges can be based on the expected gain in precision and thus 
could be reduced to the closeness of the image edge to the control points. 
Another means for 'reducing the search is to clip whole subtrees by putting 
an upper bound on the global fit between model and image edges. Other pos­
sibilities to increase search efficiency can be found but have to tested by 
simulation studies. 

Altogether the presented concept forms a basis for a closed procedure 
for model based location of objects. It also could be used for matching two 
edge based image descriptions, e. g. for registration of satellite imagery. 
Though it has been motivated by locating 3D objects in an image it also 
could be used for locating 3D objects in space, then requiring special pro­
cedures to determine approximate values for the orientation parameters. On 
the other hand investigations are necessary to test the efficiency of the 
statistical approach and to check in how far approximations may lead to sa­
tisfying results. 
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