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ABSTRACT 

Two nonlinear programming techniques, unconstrained and 
constrained, can be used for designing two-dimensional finite­
duration impulse response (FIR) digital filters. The objective 
function in nonlinear programming is the summation of the 
squares of difference between desired frequency and computed 
frequency and the squares of a FIR filter having an 
exponential-type weighting function. The frequency response of 
a FIR filter, thus, can be smoothed by forcing the magnitude 
of the impulse response to decrease gradually from the center 
of the filter to the edges. The use of constrained nonlinear 
programming provides additional constraints to control filter 
coefficients in the spatial domain. A two-dimensional 
differentiator design using these techniques is presented. 
These techniques, however, can be applied to a wide range of 
filter design problems. 

INTRODUCTION 

In digital image processing, two-dimensional (20) finite­
duration impulse (FIR) filters (also called nonrecursive 
filters) are often used to improve the utility of a given 
image for a specific application. Techniques used to design a 
filter for one application may not be suitable for another. It 
is desirable, therefore, to develop filter design techniques 
that are flexible enough to encompass a large number of 
applications without sacrificing perfo.rmance for any 
individual filtering problem. A filter design tool that can be 
easily modified to accommodate a wide range of applications, 
such as smoothing or edge sharpening, would be of great value 
to a filter designer. 

For a given FIR filter, there is a unique frequency response 
that is the discrete Fourier transform (OFT) of the filter. The 
FIR filter can be obtained by performing the inverse Fourier 
transform on desired frequency response and truncating the 
result. This truncation, however, distorts the desired 
frequency response. 

It is not possible to construct a linear, discrete FIR filter 
with a DFT that exactly matches all desired frequencies. Thus, 
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techniques used in digital filter design attempt to compromise 
the trade-off between matching desired frequency responses with 
computed frequency response, and controlling the effects of 
spatial truncation. 

In this paper, nonl programming techniques are used to 
solve the above problem FIR filter design. Here odd-
length symmetric (zero-phase) filters are discussed. Nonlinear 
programming is a mathematical technique used to minimize a 
nonlinear function called the "objective function"" The 
objective function defined here a combination of a mean-
square error term of and an exponential-
type term of impulse error term, a 
constraint applied is used to control 
the between 
responses of . The term, a 
constraint appl the used to decrease 
the magnitude of the FIR filter coefficient gradually from the 
center of the filter to the edges. 

TWO-DIMENSIONAL FIR FILTER DESIGN 

In a two-dimensional linear, discrete system, the frequency 
response of an FIR is written as 

H(u,v) = N f= h(m,n) e -j(mu+nv) (1) 
m=-N n=-N 

where j = {=I, 2N+1 is the filter size in each dimension, and 
h(m,n) is the FIR filter (or the filter coefficient . As shown 
in equation (1), the frequency response can be as a 
linear function of the FIR . The FIR filter design 
problem consists of determining h(m,n), when N predefined, 
which produces the desired frequency response H(u,v)" 

If the impulse response 
follows that 

lie 

H(u,v) = II (-u,-v) 

to be real, then it 

(2) 

where the asterisk means complex conjugation. If we are only 
concerned a filter , that means the 
frequency response is also assumed to be real, then 

b(m,n) = 

and equation (1) can be 

lI(u,v) = h(O,O) + 2 

N 
+2 L 

n=l 

m=l 

In order to construct a 
frequency response of 

(3) 

as 

(4) 

FIR for the continuous 
(4), the computed frequency 



response H(u,v) must have the best to the desired 
Nyquist range of the frequency response 

frequency domain. Let 
and 

desired frequency 
be given by 

(5) 

The approach for determining a FIR filter is to minimize some 
functions of this error, such as the -norm (mean-square 

I c2' 

e2 = [ f f E(u,v)2 du dvl
1

/
2 (6) 

or the Chebyshev norm, Coo, 

Coo := max IE(u,v)1 (7) 

(De 1974 . Mathematical optimization techniques such as 
l..L.L.L ..... o,.a.. have been employed extensively to minimize 
the norm I 1970; , 1972; and 
others, 1975; Fiasconaro, 1979). The magnitudes of the FIR 

from 1 programming, , are unable 
to be decreased gradually from the center of filter to the 

( Telljohann, 1984). 

The least-squares be appl to 
minimizing design 
way, using a 

method and , 1975), which leads to 
adverse behavior discontinuities H (u,v) .. Instead of 
using a rectangular windowing method to truncate a fiter 
directly, an weighting function can be used 
to force the magnitudes of the filter coefficients to decrease 
gradually to zero from the center of the filter to the edges. 
The coefficients can be determined by minimizing a 
nonl function, F ), as 

F(X) := F(h(m,n» 
:= r P(h(m,n» + g (8) 

where 
X a vector with parameters h(m,n), m::::: 0,1, ••• ,N 

n ::::: 0,1, .•• ,N 

z, rand g are 

constraint 
incorporates 

the 

du 

term, Q(h(m,n», 
by factor g .. The 
on the 



accuracy of frequency response, relative to the magnitude 
variation of the FIR filter. The value of r/q=lOOO is 
recommended as about optimum for a wide range of filter 
design. If q is set to zero, the equation (8) can be solved by 
least-squares method. 

The exponential-type function in the second term weights 
filter coefficients more when the greater their distance from 
the central coefficient. The central coefficient, h(O,O), is 
not weighted. The weighting factor z in the exponential-type 
function is selected by the filter designer and can be 
adjusted to force the magnitudes of filter coefficients at the 
edges to nearly zero. 

If some further constraints on the FIR filter are desired, 
then each constraint can be formed into as 

L S h(m,n) S. U (9) 

where L is the lower bound and U is the upper bound of the 
filter coefficient. Land U can be either constants or 
functions of the other filter coefficients. 

NONLINEAR PROGRAMMING 

The mathematical technique used to minimize the nonlinear 
function of equation (8) is nonlinear programming. The 
purpose of nonlinear programming is to minimize a nonlinear 
objective function F(X), where X,X=(x1 , x 2 ' ••• , xk ), is a 
point in the k-dimensional parameter ~pace. The space is 
defined by k mutually orthogonal axes, each represented by 
parameter x., i=l, 2, ... ,k. Nonlinear programming is either 
unconstrain~d or constrained, depending on the ability to 
manipulate the restrictions of the parameters x. in the 
optimization process. 1 

unconstrained nonlinear programming, where no constraints are 
placed on parameters, can be classified as either direct 
search methods or gradient methods. Direct search methods do 
not require explicit evaluations of partial derivatives of the 
objective function, but instead only require computing the 
objective function values, plus information obtained from 
earlier iterations. In some direct search methods (for 
example, Powell's method, 1964), objective function values are 
used to obtain numerical approximations of their derivatives. 
These direct methods are most suitable for investigating 
simple models that have relatively few parameters. 

Gradient methods are those in which the search direction for 
finding a minimum point in each iteration is selected on the 
basis of the gradient of the objective function. This involves 
computing the partial derivative of the function with respect 
to each parameter. The negative of the gradient vector can be 
utilized to find the minimum point rapidly. The gradient of an 
objective function can be computed either analytically or 
numerically .. 

constrained nonlinear programming techniques fall into two 
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objective 
known 

a ity checking 
methods are to unconstrained methods, except that a 

made to see if a is violated. 
occurs, the relocated the 
region a manner. The modified objective 

function technique incorporates the constraints into the 
obj function to produce an unconstrained problem. 
Penalty functions are appl to the objective function at 
nonfeasible points, forcing the search back into the feasible 
region" 

of the 
programming can 

IS method, a 
, and 

and 
(1964) and 

used the nonl.u~~,~ 
(1973). In paper, 

unconstrained 
, a 

, are used to study 
of Powell's 

Powell 

APPLICATIONS AND DISCUSSIONS 

A 2D the of 
nonlinear programming " The frequency 
response of a normalization, 

F(u,v) :::::: (10) 

The symmetry conditions and b(m,n) = b(n,m) 
exist. Therefore, (4) can be as 

= + 2 + 

+4 

+ 4 ( cos(mu) + cos(nv» (11) 

are symmetrical, only 
and the 

1 be shown .. 

The frequency , a function of 
frequency domain, there are an infinite 
number of points (u,v) over the best 
desired.. It is 
infinite set when 

problems .. 
(8) 

to choose some 
nonl 

In order to 
we need to to 



M M 
(12) 

where M, the data-size, is the number of data samples with 
equal along each in the quadrant. 

In table 1, the errors of six 
parameters are compared. The 

different weighting 

from equation (12) and the maximum 
difference between each ~~~~M~ 

frequency. The impulse 
table 2 and the 
figure 1 .. 

error obtained 
the maximum 

and computed 
shown 

is shown 

From table 2, it found, example, that value z 
assumed between 2.5 and 3.0 can force the magnitudes of 
coefficients to zero at . The mean-
square error and the maximum error, however, 
increased when z 

In table 3, the mean-square errors of different data sizes 
with four different parameter z values are compared when N=5, 
r=1000, and q=l. Error increases with increasing M when N 
fixed. This implies that it is not necessary to sample the 
desired frequency too densely. 

In table 4, the mean-square errors of different filter sizes 
with four different z values are compared when M=II, r=1000, 
and q=l. It is evident the mean-square error decreases 
with increasing size while the data size is fixed. It 
proves that the computed response at a desired 
frequency response will be quantitatively better for a larger 
filter size. However larger entails an 
in the computation for the numerical summation. The 
designer has to make a compromise between obtaining sufficient 
accuracy with a relatively small filter size and reducing the 
computation time. 

For some applications in digital image processing, it may be 
required to reduce the ringing effect caused by alternating 
signs of the filter coefficients. In order to minimize the 
ringing problem, one may restrict all coefficients, except the 
central one, h(O,O), to have the same sign.. Also, for getting 
an even smoother response, the magnitude of each filter 
coefficients may be constrained to be 

h(m,n) ~ ° 
h(m',n') ~ h(m,n) 

or 

for aU (m,n), except (0,0), 
if Im'l + 1 ::::: I m I and n' :::::: n, 
if In'l + 1 :::: Inl and m' :::: m (13) 

since the Rosenbrock's method has to check, and 
relocate if necessary, the feasible region at 
each iteration, the computation used this method is 
therefore greater than those based on 
optimization methods. Here, a smaller filter, 
is designed under the above when M=4. 
frequency of 

1 

7 
The 

) , 

l(h) and the 



Table 1. Error analysis of 2D dlfferentiator design using nonlinear 
programming 

Name r q z mean-square error 

Filter 1 1000 0 0.0 0.016 

Filter 2 1000 1 1.0 0.016 

Filter 3 1000 1 1.5 0.016 

Filter 4 1000 1 2.0 0.019 

Filter 5 1000 1 2.5 0.056 

Filter 6 1000 1 3.0 0.118 

Table 3. Mean-square errors of different data 
sizes (M) when N=5, r=1000, and q=1. 

z M=7 M=8 M=9 M=10 M=11 

0.0 0.016 0.047 0.071 0.091 0.109 

1.0 0.016 0.047 0.071 0.091 0.109 

2.0 0.019 0.049 0.072 0.093 0.110 

3.0 0.118 0.150 0.176 0.200 0.221 

Table 4. Mean-square errors of different filter 
sizes (N) when M=11, r=1000, and q=1. 

z N=5 N=6 N=7 N=8 N=9 

0.0 0.109 0.076 0.039 0.025 0.007 

1.0 0.109 0.076 0.039 0.025 0.007 

2.0 0.110 0.083 0.046 0.032 0.015 

3.0 0.221 0.136 0.089 0.060 0.044 

maximum error 

0.050 

0.054 

0.054 

0.057 

0.082 

0.103 



5 ·0.0:U09 -0.00244 
4 0.02291 -0.00144 
J ·0.0 .. 573 -0.00941 
1 0.05766 ·0.00990 
I ·0."4191 ·0.01149 

D1III0 2.41943 -0.44191 

mlllll 0 I 

5 -0.02307 -0.00244 .. 0.02296 -0.00145 
3 -0.(457) ·0.00941 
2 0'()576S ·0.00990 

• -0.44190 ·0.01150 
DIIlIO 2.41953 ·0.44190 

Dilll 0 J 

5 ·0.01176 ·0.00150 .. 0.021!H ·(tOOI49 
J -0.0457) -0.00945 
1 0.05763 -0.0098. 
I -0.4419<4 -0.08153 

1il"'0 1.4.943 ·0.44194 

m- 0 I 

Table 2. Impulse responses of seven different FIR filters. Filter number 
is refered to table 1. Filter 7 is derived using constrained 
nonlinear -................. ... 

fUtltr I filler 4 

-0.00211 .0.00210 ·0.00191 ·0.00216 
·0.00205 -0.00233 -O.OOlOO ·0.00191 
-0.00401 ·0.00162 -0.00233 ·0.00210 

5 ·0.01960 ·(t001S9 ·0.00255 
4 0.01111 ·0.00192 ·O.O()lU 
J .().O4620 ·OJ)0951 -O.OO411 

·0.00982 ·OJ)0401 ·0.00205 -o.OCUU 1 0'-)5754 oO.OO~r71 .0.00991 

-0.00990 -0.00941 -0.00144 .. 0.00244 I -0.44269 ·0.08180 ·0,00911 

0.OS'66 -0.04573 0.0119' ·0.01309 D.O 2.41898 -0.44169 0.OS754 

1 J 4 5 18" 0 I 1 

fUter 2 Filter ~ 

-O.OO:U J -0.00169 -0.00191 ·0.00114 5 -0.00755 -0.00146 -0.00141 
·0.00205 .0.00ll3 -0.00300 ·0.00192 .. 0.01856 -0.00ll1 -0.4)0204 
·(),00401 -0.00161 -0.002.11 -0.00269 1 -0.0<11805 ·0.(H010 -0.00599 
-0.00912 ·0.00407 ·0.00205 -0.00:211 1 0.05792 -0.00946 ·0.01001 
-0.00990 -0.00941 ·0.00145 ·()'00244 I -0.44498 -0.08247 -0.00946 
0.05765 -0.(457) 0.0229' ·0.01301 •• 0 2.41009 -0.44491 0.05791 

1 J .. S Di1lll 0 I 2 

filter 3 Filler 4) 

·0.00111 -0.00274 ·0.00113 • (tOO 166 ~ -0.00094 -0.00019 -O.OOOU 
·0.00106 -O.OOllS ·o.oona .0.(011) 4 0.00925 -0.00285 -0.00066 
·0.00410 -0.00167 -0.00B5 -0.00214 3 -0.04772 -0.00997 -~)J)0616 

-0.0091" -0.00410 ·0.00206 -0.00217 1 0.05885 ·0.01029 -O'()0913 
·0.00981 -0.00945 -0.00149 -0.00250 I -0.44688 -0.08381 ·0.01029 
0.(516) -0.04513 0.0229. -0.011'6 ... 0 1.42431 -0.44688 0.05885 

1 .3 ~ S lID· 0 1 1 

fn.~f 7 

3 -0.00lI1 -0.00t62 -O.OOOlO ·O.OOOlO 
1 ·0.05656 -0.05651 -O.OOOll -0.00030 
I -0.34421 -0.U917 -0.05651 -0.00161 

11.0 1.S6946 -0.3442' ·0.05656 ·O.OOlll 

-.. 0 I 1 l J --

-O.OOlle -0.00011 -o.ooon 
·OJ)OlS2 ·0.00184 -0.0008S 
·0.00201 ·0.00151 ·O.OOllO 
·0.00431 -0.00:211 ·0.00155 
-0.00957 ~0.OOI92 -0.OOlS9 
·O.04no O.Ollll ·0.01960 

3 4 5 
----

-0.00038 ·O.OO(HO -0.00001 
-0.00116 -0.00020 -0.004HO 
-0.00241 -0.00176 -0.00031 
-0.00599 ·0.00204 -0.00141 
-CUUOlO -0.00337 -0.00146 
-0.04805 O.lHI56 -0.00155 

3 .. 5 
j 

-~---... ------~ 

-0.00002 -0.00001 0.00000 
-0.00036 0.00000 -0.00001 
-0.00115 -0.00036 -0.00002 
·CUlOn6 -0.00066 -o.ooon 
-0.00991 -0.00U5 -0.00019 
-0.04711 0.00925 -0.00094 

J .. 5 
I 

I 
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Figure 1. Frequeney responses of 2D differentia tor •. <a> 
Theoretkal frequeney response. (b) to (h) are 
frequeney responses of filters I to 7, respeethely. 

:! 
Q. 

IE 
• .. ... .. 
c 
l1li 

~ 
l1li 

J> 

.. 
0. 
IE 
l1li .. 

WI, n 

U (v.dllu,.'slllm, •• ) 

Cd) 

a::. di Ii 

.... ... 
~ ~r==-- L >< I' ... "A r> ..... .!~ 
l1li 
;; 
l1li .. .... 
lI> 

lT/l ff 

u <redllllns/ump •• ) 

(h) 



corresponding impulse response is shown in table 2. 

It is not always suitable to impose additional constraints on 
the filter coefficients. Once these additional constraints are 
added, the value of the first term in the objective function 
(equation 8) will increase significally. This means the 
specified frequency response will probably be unable to be 
matched exactly. There is always a trade-off between the 
smoothness of the FIR filter. and the error between the desired 
frequency and the computed frequcency. 

In figure 2, a synthetic image is used to evaluate the 
performances of several different filters designed using 
nonlinear programming. Comparing the width of each boundary, 
particularly at the central small square block, filter 6 
(z=3.0) and filter 7 give better resolution for edge­
sharpening. In figure 3, LANDSAT Thematic Mapper near-infrared 
reflectance (band 4) data is also processed using the same 
filters • Note the sharpness introduced by filter 6. Since the 
filter 7 is designed at the expense of frequency accuracy, 
some unexpected information could be introduced in figure 
7 (f) • 

CONCLUSIONS 

Design of two-dimensional FIR filters from frequency response 
specifications has been discussed. The examples shown in this 
paper indicate that nonlinear programming can be used quite 
successfully to design FIR digital filters. The frequency 
response of a FIR filter, obtained by minimizing equation (8), 
can be smoothed by forcing the magnitude of the impulse 
response to decrease gradually from the center of the filter 
to the edges. 

The factors rand q in equation (8) are used to control the 
restrictions in the frequency and spatial domains 
simultaneously. The larger the ratio r/q, the greater the 
emphasis on exerting the accuracy of frequency response, 
relative to the magnitude variation of the FIR filter. The 
factor z in equation (8) is selected by the filter designer, 
based on the character of the FIR filter required and can be 
adjusted to force the magnitudes of filter coefficients to 
nearly zero at the filter edges. 

If further constraints on the FIR filter are required, 
constrained nonlinear programming may be used to solve such 
problems. The result of imposing additional constraints, 
however, could reduce the accuracy of the FIR filter frequency 
response. 
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Figure 2. Synthetic image test of 2D differentiators. 
(a) Synthetic image. (b) to (f) are results 
using filters 1, 2, 4, 6, and 7. 
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Figure 3. LANDSAT image test of 2D differentia tors. 
<a) Original TM band 4 Image. (b) to (f) are 
results using fHters 1, 2, 4, 6, and ,. 
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