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ABSTRACT 

The Bayesian inference along with the step-by-step technique 
allows foresee a possibility to increase the efficiency and 
reliability of phototriangulation. It also appears to improve 
the strength of the block, in order to increase the economy 
with respect to control points. 

The used methodology consists on simulation of a 25 points 
mesh, from which a block of aerial photos is generated. Random 
and gross errors are added to the ideal photocoordinates. The 
LS adjustment, based on concept of Bayesian inference, is made. 
The Pope's method is used to detect and eliminate gross errors. 

The results show that for few outliers the approach works well; 
when the quantity increases the, efficiency decreases. By other 
hand, the better the quality of a priori parameters, the better 
the Z-coordinates of the object points. 
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1. INTRODUCTION 

The bundle block adjustment mixes photograrnrnetric, statistical 
and data processing concepts. Usually, the data are split into 
observables and parameters (unknowns). The photocoordinates and 
control points are observations and exterior orientation of 
photos and pass point coordinates are unknowns. The functional 
model (colinearity equations) links the observations and 
parameters. Because of the superabundance, the adjustment of 
observations is based on method of least squares, adopting the 
parametric technique with weight constraints to control points. 

In phototriangulation, one worries about reducing and preparing 
the data because of its considerable mass. It is almost 
impossible to think of phototriangulation without gross errors 
(outliers) because of its own process (digitation, recognition 
of points etc). The quality control is essential and it must be 
as rigorous as possible. The bundle block adjustment is 
sensibly damaged in presence of gross errors; the system 
reliability decreases and the end product becomes doubtful. 

By other hand, it is fair to admit a previous knowledgement 
about the unknowns in despite of their approximation. In fact, 
in practice, one always knows something about them. In 
principle, the question is the nature and extent of its 
knowledgement. If the nature of the "a priori" knowledgement 
about parameters is subjective the question rents to Bayesian 
inference. In this case, the previous information is "got" by 
researcher based on his own experience (BECKMAN & COSTA NErrO 
121, BOSSLER 131). By other hand, the previous knowledgement 
from objective nature, given by experimental evidence (direct 
observation of parameter), is treated under generalized 
adjustment (SCHMID & SCHMID 191. The extent of the previous 
knowledgement of unknowns, subjective or objective, is 
incorporated to the phototriangulation system as a vector of "a 
priori" parameters and the corresponding dispersion matrix 
(variance-covariance matrix) and then weight matrix. 

It is important to note the realization of reference system for 
phototriangulation can be done by the parameter vector and its 
corresponding dispersion matrix. This means that the control 
points are avoided to inform the reference system at least 
temporarily. The great advantage links to removal the 
conjecture that gross errors, possibly existing in control 
points, influence the phototriangulation results while in 
depurating the observations. This process assures greater 
reliability to solution. 

2. BAYESIAN INFERENCE 

The process of statistical inference seeks to estimate 
parameters (particularly means and variances) from experimental 
data. In case of Bayesian inference, it occurs the estimate to 
the new state of parameters based on acquaired knowledgement 
(experiment realization) and on initial state of parameters. 
Therefore, it is an estimate revision deriving from a new state 
of information. 
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In figure 1, IXo, Col and lXI, cil represent the same parameter 
vector and respective covariance matrices, although in distinct 
states, that is, with previous and posterior estimates to the 
experiment realization (1). Taking the posterior normal 
probability density function, its Bayesian estimates follow 
three distinct situations: 
(a) unknown mean and known variance 
(b) known mean and unknown variance 
(c) both mean and variance unknown. 

Figure 1: Ilustration of Bayesian inference concept 

Ixo,col initial state of parameters (with f(x)) 

\ 
IBayes' Theorem I IXl,Cll 

I 
new information (Observations with f(ll~)) 
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state 

of 
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For the first case (a), the expressions for estimators are 
presented in abundance at specialized literature (eg: 121, 13\, 
141 and 1131). BECKMAN & COSTA NETO \21 present the solution 
for the (b) situation. And for the last case, that one is the 
nearest to photogrammetric data reality, it is cited the 
references \21 and 13\. 

BOSSLER 131 gives the following three Bayesian estimates: 

1) For the classic linear(ized) model: 

x = (A'PA- 1l.A'Pl 

,,2 -1 
= oo.(A'PA) 

2 

&0 = ~'P~/(n-u-2) 

2) For the linear(ized) model with relevant previous 
information: 

x = - (A'PA + P )-1 .(A'PI + P .1 ) x - x -x 

2 

= &: (A'PA + P )-1 
x 

0 0 = (v'Pv + v'p v )/(n-2) - - -x x -x 

common to both set of data. 

( 1 ) 

( 2 ) 

The lost of two degrees of freedom to estimate the posterior 
"variance of unit weight" (VUP) is oughted to the two unknown 
parameters of the postulated function (the mean vector and 
variance~covariance m~ttix). 
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3) Yet for the linear(ized) model with relevant previous 
information but with distinct and unknown VUPs to each set of 
data: 

2 2 1 2 

X = - (A'PA/O o + P /0 )- .(A'PI/a + PI/a 2 ) 

x-X X x x - 0 

C = (A i PA/0
2 

+ P /0
2

)_1 
x x x 0 

2 
'" a = v'Pv / (n-u) 

o 

2 

a = v 'p v / (n .... u) 
o -x x-x 

2 2 

( 3 ) 

The above expressions for C , a , and a are only approximated. 
The rigorous solutions are fiot ~ossiblex(VANICEK & KRAKIWSKY 
1121 ) . 

3) RELIABILITY 

Reliability relates to the adjustment quality with respect to 
detecting "errors" on mathematical model. Such errors can be 
gross or systematic. Systematic errors are directly related to 
functional model adequacy, that means the "ideal" functional 
model eliminates systematic errors from the system. Then the 
permanence of such errors means that the functional model is 
not qualified to represent the reality. 

So, reliability is understood as the ability in detecting and 
eliminating gross errors apart from observations, with help of 
a statistical test, when estimating parameters. In this 
context, it is internal reliability, which can be measured by 
the outlier to be detected by the statistical test in the 
observation. The external reliability is described by the 
influence of undetectable errors on object coordinates. It is 
assumed that a statistical test was aplicated and all 
standardized residuals are under a critical value, which 
depends on the significance level of the test (KOCH 151). 

The utility of both (internal and external) reliability concept 
is perceptible when there is more than one outlier in the set 
of observations. If the statistical test fails, that is it 
occurs type II error, the meaning is that the adjustment has a 
certain internal reliability degree (the critic value) I 

although at least an undetected outlier is present among 
observations. In this case, the investigation on external 
reliability indicates the effect of this outlier on object 
point coordinates. In this present work, the used statistical 
test is the Pope's method (POPE 181), which rejects the 
corresponding observation to approximated standardized residual 
W. > c. The critical value "c" is obtained from 
t~u-distribution. The approximated standardized residual w· is 

1 computed by. 

W. 
1 

2 

-
= Iv. I / 

1 
s 

V' 1 
s 

Vi 

2 

= a . (m/p) 
o 

m (n-u)/n ( 4 ) 

a: the same as before, n: number of observations, u: number 
o 

of unknowns and p: weight for all photocoordinates. 
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4. METHODOLOGY 

Firstly, it was defined a 25 idealized object points grid on a 
few uneven terrain and regularly distributed. Ten aerial photos 
were idealized at 1:10000 approximated scale, in order to 
guarantee circa of 60% and 30% end and side lap, respectively. 
In some photos angular movements lesser than 2° sexagesimal 
were permitted. There are four photos with six image points and 
six photos with nine image points. Therefore, there are 156 
observation equations and 135 unknowns (parameters) completing 
21 superabundant equations. If all parameters are weighted 
justified by a previous knowledgement, it arrives to an 
equation system with 156 degrees of freedom, exactly the number 
of observation equations. 

The computed photocoordinates under the rigorous colinearity 
assumption (without systematic errors) represent ideal values 
to which were added random errors not greater than 3 standard 
deviation. One standard deviation (0) was made equal to 5 ~m. 

The implemented solution was the set of equations (3). The 
previous variances for parameters were 10 m2 and 100 m2

• Lesser 
variances grant to the block geometry greater strengthening and 
conversely. 

5. RESULTS AND DISCUSSION 

The table 1 synthetizes the results referent to the fourteen 
realized experiments, which were split in five groups as showed 
by column 1. The columns 2, 3 and 4 mean "value of gross error" 
(VEG), that is the outlier size, "previous variance of 
parameter" (VPP) and the "quantity of gross errors" (QEG), 
respectively. The headed columns by DLAEG (automatic detection 
and localization of gross errors) represents C corret 
detections, E wrong detections and F faults, that is nor 
correct nor wrong detection. The occurrence of E can be 
compared to type I error" and F to the "type II error", The 
columns 8 and 9 represent degrees of freedom and the "a 
posteriori" VUP referent to photocoordinates (as in (3)). The 
10th column shows the absolute value of the greatest 
remainder residual, that is all residuals lesses than refer to 
the non rejected observations by the statistical test, what is 
effectively a quality control indicator. The last column 
shows the iteration number until to finishing the outliers 
detection plus (+) the iteration number after introduction the 
control points. 

The Gl and G2 groups present the occurrence of 60 outliers (30 
~m) and G3 and G4 groups 180 outliers (90 ~m). The later 
represents approximately the inferior limit of detection 
capacity of step-by-step technique. The Gl and G3 groups and 
the GOA test represent the greatest geometric strength 
situation for the block when comparing to G2 and G4 groups and 
to GOB test, because of VPP. In all groups the outliers are in 
small, middle and great quantities. 
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Table 1: Synthesis of the results of realized experiments 

RESULTS 

CHARACTERISTICS DLAEG STATISTICS 

Group VEG Vpp QEG C E F GL VUP max V NI 
( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 10 ) ( 11) 
GOA 0 10 m l 0 21 1.89 9.4 3+2 
GOB 0 100 m2 0 21 3.68 9.8 3+2 

A 2 2 0 0 19 2.51 7.4 5+2 
Gl B 60', 10 m2 6 3 1 3 17 3.31 7.3 11+2 

C 10 1 0 9 20 11.22 16.8 5+2 
A 2 2 0 0 19 1.27 7.3 7+2 

G2 B 60 100 m2 6 3 0 3 18 4.20 9.0 9+2 
C 10 1 0 9 20 10.98 16.4 5+2 
A 2 2 0 0 19 1.32 7.4 5+2 

G3 B 180 10 m2 6 5 5 1 11 1.24 4.8 17+2 
C 10 5 0 5 16 12.01 20.1 11+2 
A 2 2 0 0 19 1.27 7.4 5+2 

G4 B 180 100 m2 6 4 3 2 14 2.11 7.5 13+2 
C 10 5 0 5 16 11.87 20.1 11+3 

The two first lines of the table present the characteristics 
and results of experiments without outliers in distinct 
situations of previous knowledgement of parameters. The 
remarkable difference is the VUP result, which doubles when VPP 
increases ten times. In other words, the VUP varies inversely 
to geometric strength of the block. 

The present method of removal of probable inconsistent 
observations may be interpreted as an automatization of the 
ideia of rejecting the associated observation to the largest 
residual in a repetitive process until the solution appears 
satisfactory to the researcher~ However, because of 
automatization it is possible that more than one suspicious 
observation can be eliminated. More important is the fact that 
the rejection rule substitutes the researcher to decide on 
satisfactory values to finish searching possible outliers. 

When the number of outliers increases, DLAEG becomes worse. It 
is possible to conclude that Pope's method, used after 
Bayesian solution, functions when there are few outliers, it 
functions partially when the number is mean and it does not 
function when the quantity is great. 

When the VPP decreases, it corresponds to the increasing the 
previous information about the parameters and the consequence 
is that DLAEG improves. However, it is necessary to pay 
attention to Band C situations of table 2. The B situation is_ 
undesirable because it represents a fault of an observation in 
a superabundant set and the C situation is undesirable and 
intolerable because it represents the inclusion of an outlier 
as a ~quasi-observation~. 
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Table 2: "Quasi-observation" a weight versus quality 

"quasi­
observation 

quality 
good bad 

A C great 
weight------~----~~----­

small B D 

The increasing of the outlier value in the sense of leaving the 
system resolution limit of DLAEG to sensibility regions of the 
statistical teste is benefic, because the detection is 
improved. By otler hand, the occurrence of very great outlier 
value is prejudicial to the statistical tests. Therefore, the 
step-by-step technique is necessary. 

The following tables present the experiments referring to 
object points coordinates. The table 3 synthetizes the results 
bsed on concepts of "mean square error" (EMQ) and "estimated 
standard deviation" (DPE). 

The first column of both tables 3 and 4 identifies the 
experiments, which characteristics are the same as table 1. The 
columns 8, 9 and 10 of table 3 expresses the "EMQ/DPE" ratio, 
that means the deterioration, or conservation, of external 
precision (accuracy) to internal precision. By conservation it 
is understood the ratio value lesser than 1. This could perhaps 
be consequence of the approximated estimate of C. Other 
aditional reason could be the neglecting of statistical 
correlations of the parameters. 

The table 4 presents the root square in X- and Y-axes 
(EMQ-X and EMQ-Y) in standard deviation (a = 5 llm) units of 
photocoordinates. The EMQ-Z, in this table, is presented in 
units to a thousand meters of height flight (Hv) . 

Table 3: Synthesis of EMQ and DPE of object point coordinates 

EMQ ( m) DPE (m) EMQ/DPE 
G X Y Z X Y Z X Y Z 

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) (10) 
GOA 0.11 0.10 0.70 0.10 0.11 0.55 1.1 0.9 1.3 
GOB 0.10 0.10 2.16 0.10 0.11 0.56 1.1 0.9 1.4 
GIA 0.11 0.12 0.60 0.10 0.11 0.55 1.1 1.1 1.1 
GIB 0.07 0.11 0.60 0.10 0.12 0.55 0.7 0.9 1.1 
GIC 0.14 0.10 0.82 0.10 0.11 0.55 1.4 0.9 1.5 
G2A 0.11 0.12 1.38 0.10 0.11 1.59 1.1 1.0 0.9 
G2B 0.10 0.12 1.39 0.10 0.12 1.59 1.0 1.1 0.9 
G2C 0.14 0.11 2.88 0.10 0.11 1.56 1.4 1.0 1.9 
G3A 0.11 0.12 0.60 0.10 0.11 0.55 1.1 1.1 1.1 
G3B 0.21 0.69 0.51 0.24 0.72 0.60 0.9 1.0 0.9 
G3C 0.16 0.21 0.68 0.10 0.11 0.55 1.6 1.9 1.2 
G4A 0.11 0.12 1.38 0.10 0.11 1.59 1.1 1.0 0.9 
G4B 0.14 2.26 1.32 0.11 2.24 1.60 1.2 1.0 0.8 
G4C 0.16 0.23 1.41 0.10 0.12 1.59 1.6 2.0 0.9 
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Again, the two first lines of tables present the results of 
experiments without outliers, modifying the previous 
knowledgement of parameters. The EMQ and DPE values referent to 
X- and Y-coords (table 3) are practically equivalent. Meantime, 
younder differing between themselves, the EMQ-Z and DPE-Z are 
significantly greater than those for X and Y, as expected by 
the way. The mentionned difference is greater when the 
comparison is done between EMQ and DPE of the experiments. In 
this case, the deterioration ratio of external precision is 
approximately 3.1 and 2.9 for internal one, when the VPP 
increases ten times. The table 4 confirms this verification. 

Table 4: Synthesis of EMQ'·-X e Y in units of (J and EMQ-Z in % 0 Hv. 

EMQ in units 
of (J EMQ in 

GrouJ2 x y %0 Hv 
( 1 ) ( 2 ) ( 3 ) ( 4 ) 
GOA 2.3 1.9 0.7 
GOB 2.2 1.9 2.2 
G1A 2.1 2.5 0.6 
G1B 1.5 2.1 0.6 
G1C 2.8 1.9 0.8 
G2A 2.1 2.4 1.4 
G2B 2.0 2.4 1.4 
G2C 2.7 2.2 2.9 
G3A 2.1 2.5 0.6 
G3B 4.3 13.8 0.5 
G3C 3.2 4.2 0.7 
G4A 2.1 2.4 1.4 
G4B 2.8 45.3 1.3 
G4C 3.2 4.5 1.4 

The figure 2 shows the Z-discrepancies at each object point 
because of VPP change. It is seen that under greater geometric 
strength of the block the discrepancies are lesser. It is also 
seen that error propagation (discrepancies) is cross to the 
strips, as expected. This occurs because there are only 4 
Z-control points ate corners. Meantime, the stablished 
geometric strength by VPP can control parti~lly the error 
propagation. 

Figure 2 : Z-discrepancies at 25 object points 
a: when VDD .L .L = 10 m2 

• 

b: when VPP = 100 m2
• 

0.0 0.1 0.0 0.2 0.0 m 
0.6 0.5 0.5 0.7 0.6 

a 1.2 1.1 1.1 1.1 1.1 
0.7 0.6 0.6 0.5 0.5 
0.0 0.1 0.2 0.0 0.0 

0.0 0.1 0.1 0.2 0.0 m 
1.8 1.7 1.7 1.9 1.8 

b 3.6 3.5 3.5 3.4 3.5 
1.9 1.8 1.8 1.7 1.7 
0.0 0.1 0.2 0.0 0.0 
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In general, when VPP is lesser, the trend to conserve the 
external and internal precision is perceptive in table 3, 
considering only Z-coords. When X-and Y-coords, the results 
show that the change of parameter state is indifferent for 
external or internal precision, although there are exceptions 
(G3B, G3C, G4B and G4C, tables 3 and 4). 

6. CONCLUSION 

The bayesian in inference is presented as a tool to solve the 
bundle block adjustment, based on a certain previous 
information degree about parameters, in general, available 
after step-by-step technique for automatic detection and 
localization of outliers (DLAEG). It allows to stop using 
control points at least temporarily. The great advantage is the 
residual analysis of photocoordinates without the influence of 
control points and its probable outliers. Under the minimum 
quantity of control points, the Bayesian inference contributes 
to establish the geometric strength of the block and to control 
partially the error propagation, specially Z-coordinates of 
object points. The Pope's method is efficient for DLAEG if the 
quantity of outliers is small (circa of 1.3%). The form that 
Pope's method was implemented represents the automatization of 
the idea of rejecting the associated observation to the largest 
residual in a repetitive process. 

The external (EMQ) and internal (DPE) precision are worse as 
the number of outliers and VPP increase. These increments can 
influence the EMQ/DPE ratio when the values vary differently. 
Therefore, the reliability of phototriangulation under Bayesian 
inference is mostly influenced by the number of outliers and 
VPP. 

Although the results can show high reliability (the greatest 
remainder residual from 1 to 2a) if the algorithm fails that 
will be a false information. 

The external and internal precision referent to Z-coords trend 
to be conservati~es, if the geometric strength of the block is 
greater, that is, VPP lesser, independent from the number and 
the size of the outliers. The same is worth when there are not 
outliers. 

Some questions remaind to be investigated: Bayesian inference 
along with Pope's method and robust estimation, in order to 
improve DLAEG, using for example a . = f(p.) and p.= g(v.); 
variation of "a priori" VUP of theVparamet§rs,a 2 fo turfl 
compatible the relantionship between the weightg of parameters 
and photocoordinates. Idem for a 2

; to improve the approximated 
solution to the estimates of C ,oa 2 and a 2

, in order to reach 
b . f IX x. ° etter estlmates or externa preclslon. 
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