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1+ INTRODUCTION

In numerous applications of the terrestrial photogrammetry
the stereoscopic observation is an indispensable element of the
measuring procedure. Character of the observed object may ren-
der identification of the same point on two separate photographs
difficult and of low accuracy. On the other hand, signalling of
the observed points is not always possible or worthwhile,

The necessity of stereoscopic observation hinders or even
makes impossible the use of convergent photos. Only a single one
or several separate stereograms can be elaborated. The stereo=-
grams should have approximately parallel axes of cameras, and
a small base=length ratio is often desired.

The paper presents a discussion of some aspects of the analy=-
tical elaboration of a single stereogranm.

2., DESCRIPTION OF THE EQUATIONS USED IN THE ELABORATION
2+1s The collinearity equation

The matrix form of the collinearity equation is most often

given by:
Y = % M'R (1)

where: L
r= [x, Cyeo z] is the vector Jjoining the projection centre and
' the image of the observed point,

R = [X—XO, Y=Y, Z-ZO]T is the vector joining the projection
centre and the terrain point,
M is the transformation matrix [2] given by:

=

cosy cost - = siny cosw cosy sinat +
- siny sinw sinoat ; + s8iny sin cosat

M= siny cos K + coslyp cosw siny sin® -
+ cosyp sinw sin - cOSY cos83 sinw’
- cosWw sin A sin w cosw cos 2t |

A - scale coefficient
The equation (1) can be converted to the form:

-
X=X, = Fx = ck—g—.{;&
MIR
MiR

(2)
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After the Taylor’s series expansion we obtain the linear obser-
vation equations of the form:

JF §7Fx
Vy = (-._)-(-xf-)- d(X1) + mg d(XZ) + lx
| (3)

Z)Fz E)Fz ’
v, = ST » d(x1) + m_a d(Xz) + :Lz

where:
Xy = (XQ,YO,ZO,W W,X) are elements of image orientation

X, = (X,Y,2) are terrain coordinates of the point

lx = X=X

lz = ze*z

x%, z% - are approximate image coordinates
X, 2 - are the observed image coordinates
Some authors [2] advocate the following form of the collinearity

equation VY
. R=AMrT . ‘ . (4)
which leads to the following linear observation equations:

a <7 ? ¥ '
VFZnéﬂzdgqu CKX&,X%) + LR (5)
where: P
X1 = (xdwyd’Zd}%F?ap
X; = (xangozaﬁpfaf*)
Lg= R-R®
R° = is the approximate vector R

R*- is the observed vector R, determined by geodetic methods.
The observation equations can be also given in the form:

>R
VR = 5737y d(X3) + L 6
) 3 3 R ( )
wheres
X3 = (XQ' ’Yd ’ZQ: ,CI),Q,K,BX,BY,BZ,AK? ,AW,AQE)

Working with the equations (5) and (6) we deal with observations
of different accuracy = ?mper weighting of these observations
should not be forgotten [2].

2.2, The coplanarity condition

Xa “Xd Y& ‘Yd Zdt*zd
k4 4 1
F= 1 X Yy Zqp (7)
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.~ The equation (6) reduces to linear conditions after the se-
ries expansion- [4,5] ., The conditions were applied to points
which were not used as control poeints.

2F TR g F o .
d X : + Y =0 8
= AN (X1, 1) + §T§qj V(X1) (8)
where:
= (x1 ’z‘ ’xn’zﬁ)

v(x1) = [vx.,vzx,vxn,vzﬂ T is the vector of residuals of the
o 4 image coordinates
F” = is the free term computed on the base of the approximate
values of unknowns

2.5+ Equations introduced by pseudoobservations of the terrain
coordinates of control points

Equations of this kind were used by some authors [6]:

V(Xz) “»d(xg) + l(xz) (9)

where: ,
, +vO G

X3 = (x%,1°,2°) approximate terrain coordinates of control
G G .G .G points
X5 = (X¥,Y",2¥) pseudoobservations, terrain coordinates obe
tained from field surveys

1(X,) = 0, as Xg = Xg was assumed in the investigations

3+ SOLUTION OF EQUATIONS

The observation equations (3), (5), (6) were transformed into
normal equations and solved with the standard Cholesky algorithm.
The Schmidt orthogonalization was also applied to solution of
the equations (6). ‘

The set of observation equations (3) with conditions (8) has
the general form [3]:

AA + BY+ L =0 (10)

- design matrix of unknowns

- design matrix of corrections to observations
= vector of unknowns

= vector of corrections

- vector of free terms

- number of observation equations

- number of unknowns

= number of condition equations

Equation (10) can be written in the form:

Aq ,.5.13“(2._}.[!1.} [,_‘:'L] _ (11
[AJ‘“[ 0 T8,] v, FlL, =9 )

where "1" pertain to observation equations, while #2" to condi=
tion equations,
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1
The weightmatrix has the form p=|-Po 0 _
| 0D, P
As the matrix B=-1 the eguations (11) reducc to [1]:
T -1 T
A= (ARA) ARL (12)
wheres

Pe= { 0] [B.PTB, )™
so the whole problem is simplified to an ordinary parametric
Ccase,

Every control point emerges only once in the condition equa=-
tions (10), so the matrix:ﬂzm*k can be transformed to a more

condensed form Bsm wly? what saves a lot of computer memory.
The vector of corrections V can be computed with the formula:

V:—V—L*—‘[ _A. AL (13)
vz .Pz BZP3 (AzA*_LQ

The equations (9) were sometimes applied as a supplement to
the equations (3) or ((3) + (7)), in order to minimize correc-
tions to the terrain coordinates of control points. Together

with them a special matrix of weights, accounting for accuracies
of geodetic surveys, eas used,

P 0 __}

4, THE INVESTIGATIONS AND THEIR RESULTS
b4ele The aim and the method of the investigations

- The investigations were aimed at answers to the three follo=-

wing questions: ,

a) which form of the collinearity equations: (3), (5) or (6) is
more advantageous to the elaboration of a single terrestrial
sterecgram? ,

b) which of the two: the collinearity equations (3), or the coe=
planarity conditions (8), are more adventageous for observed
points which are not control points?

¢) does the introduction of pseudoobservation equations, per-
taining to terrestrial coordinates of control points, bring

~ any and what profits?

Several tests were run in order to find answers to the above
questions, Computer-simulated test fields of 100 to 300 points
were used. The investigations were limited to stereograms of
parallel axes of cameras and base-length ratios between 1:2 and
1:20, The conclusions were drawn on the base of the analysis of:
- true errors of terrain coordinates of newly determined points,
- true errors of orientation parameters of the images,
= convergence of the iterative solution of equations,

- coefficients of correlation between unknowns,

The correlation coefficients were determined with the formula:
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cov (i,:
o m o

where:
gij - coefficient of correlation between unknowns i and J

<Si’(53 - variances of the unknowns
cov (i,j) = covariance of the unknowns i, J

he2, Conclusions
Le241. Question a

Analysis of the equations (5) and (6), as applied to a sin-
gle stereogram, showed relatively large correlations between
the unknowns. In equations (5) our attention was drawn by co-
rrelations between corresponding parameters of orientation of
both images: the ceefficient S ranged between 0.8 and 0,95. In
the equations (6) very large correlations occured between Xy
Y, s Zy and the remaining orientation parameters: € ranged

between 0.5 and 0.95. For comparison: the equations (3), when
applied to the same cases, gave substantially lower correla=-
tions, with € between 0,2 and 0.4, and only exceptionally rea-
ching 0.5 to 0,95, ‘

It is probably due to these high correlations, that the con~
vergence of solution of the equations (5) and (63 was 2 to 5
times slower than in case of equations (3). The true errors of
the computed terrain coordinates and of the orientation para=
meters were, in case of equation (5) and (6), usually several
times larger than for equations (3). Only in rare cases the
accuracies were comparable,

- The equations £§§ and (6) give results simillar to these gi-
ven by equations (3}, provided that the corrections to the left
projection centre (XQ,, Yo s Zo') are not asked for. In this

case also the correlations between unknowns determined with the
equations (5) and (6) are significantly smaller. ‘
On the base of these investigations one can say, that equa=-
tions (3) are much more convenient for elaboration of a single
stereogram, than eguations (5) or (6). In addition. the equa=-
tions ?g) and (6) can be used only for geodetic control points
and only for a single stereogram, what excludes the use of addi~-
tional, separate photos and creates difficulties when joining
separate stereograms into one, simultaneously adjusted block.

Le2.,2 Question b

Numerous tests have shown, that the accuracy of computations
practically does not depend on whether points other than con=-
trol points are treated with collinearity equations (3) or with
the coplanarity conditions (8). So the use of coplanarity cone
ditions for strengthening of the collinear model, a method re=
commended by some authors [5] for cases of poor geometry of the
model, does not help much, .

The economic side of the problem is totally different, With
the coplanarity conditions (8) we obtain normal equations con-
taining significantly less unknowns than in case of the exclu=
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sive use of equations (3). Large amount of computer memory can
be also saved thanks to sparsity of the matrix B, (equation (11)).
Let us examine the following case. A stereogrém contains
3«5 control points and 50-100 additioenal check points. Using
the equations (3) for all points, we arrive at normal equations
containing about 6 times more unknowns than in case of condi=
tions ((?? + (7))s In addition, the profile of the normals ge-
nerated by equations 3; is about 5 times larger, than in case
of conditions ((3} + (7)),
The economic profits brought by the coplanarity conditions
diminish with the growth of the number of simultaneously adjus-
ted stereograms,

4,2,3, Question ¢

- The investigations have shown, that the pseudoobservation
equations of terrain coordinates of control points are an im=
portant addition to the model., Through proper weighting of the
equations (9) one can include accuracies of geodetic surveys of
the control points into the adjustments

The terrain coordinates were disturbed by random errors for
the analysis. Comparing the results it was found, that errors
of the newly determined coordinates, computed in the model,
which kept all contrel points fixed, were about 1.5 times lare
ger, than corresponding errors obtained with the expanded model,
which allowed a weight matrix to be associated with coordinates
of the control points. :
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