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1. INTRODUCTION 

In numerous applications of the terrestrial photogrammetry 
the stereoscopio observation is an indispensable element of the 
measuring procedure. Character of the observed object may ren­
der identifioation of the same point on two separate photographs 
difficult and of low accuracy. On the other hand, signalling of 
the observed points is not always possible or worthwhile. 

The necessity of stereoscopio observation hinders ,or even 
makes impossible :ethe use of convergent photos. Only a single one 
or several separate stereograms can be elaborated. The stereo­
grams should have approximately parallel axes of cameras, and 
a small base-length ratio is often desired. 

The paper presents a discussion of some aspects of the analy­
tical elaboration of a single stereogram. 

2. DESCRIPTION OF THE EQUATIONS USED IN THE ELABORATION 

2.1. The collinearity equation 

The matrix form of the collinearity equation is most often 
given by: 

(1) 

where: 
,. == [x, Ok. z] T is the vector joining the projection. centre and 

the image of the observed point, 

R - [X-Xo' Y-Yo' Z-ZoJ T is the vector joining the projection 
. centre a~ the terrain pOint, 

M is the transformation matrix [2j given by: 
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A - scale coefficient 
The equation (1) can be 

HTR 
x-xo == F x =- °k·M i R 

z-z .. F == 0 t1 r R 
o z k 'M i R 

- sintp cost.)' cos\f> 
+ sintp 

cos tp COS t.:r sintp - cost{) 

sinVY cos~ 

converted to the form: 
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After the Taylor's series expansion we 
vation equations of the form: 

obtain the linear obser-

d Fx . d Fx 
Vx • d(X

1
, d(X1) + d(x2

1 d(X2) + lx 

d Fz d Fz 
v2 - d(X

1
, d(X1) + ~(X2) d(X2) + lz 

(3) 

where: 
X1 :8 (Xo'Yo,Zo,tf,""","<t) a.re elements of image orientation 
X2 - {X,y,Z} are terrain coordinates of the point 
1 :8 xO-x x 
1 =- zO-z z 
xo, ZO .. are approximate image coordinates 
x, z - are the observed image ooordinates 
Some authors [2] advocate the following form of the collinearity 
equation R:= A· M'" (4) 
whioh leads to the following linear observation equations: 

VR - aCif,x1) d(X; ,X:]> + L R (5) 

wllere: . t t 
X1 :8 (xd,Y d,Zd,lf(,c:r ,at, 

1T ( It 1f ') X1 =- Xo'Y8,Z8,tp,tJ-,3t 
LR= R~ RG-
RO .. is the approximate vector R 
R~- is the observed vectorR, determined by geodetic methods. 

The observation equations can be also given in the form: 
e>R VR - d( X3

1 d(X3) + L R (6) 

where: 
X3 := (Xo' ' Yo' ,Zo' ,4>,s'?, K, EX, BY , BZ~~ ,6~ ,A?t) 
Working with the equations (5) and (6) we deal with observations 
Of. different accur.acy. - proper wei,htina of these observations 
should not be forgotten 12J. 

2.2. The coplanarity condition 

Xft 
0 

-X, 
0 

Ytl .y, o 0 Zd' -Zo' 

F == 
t YT z' (7) ~ T 

'4 II tl 

YT zT 
where: 

1 [4, t zTJ T = N'r' '-r= YT' 
r;= exT, y" z:r]'" == M'l,,-II T' 
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The equation (6) reduces to linear conditions after the se­
ries expansion- [4,5J. The conditions were applied to pOints 
which were not used as control points. 

dF 4 II. ;;J F . a ( ) 
d( X1 ,X1) ... d (~) v (Xi) + F . := 0 8 

where: 
~ lilt (x' t Z' ,x" .Z'l) 

V("1) - [vx' ,VZ1 ,Vxt1,vz,J T ~s the vector of residu.als of the 
1mage coordinates 

FO 
- iathe free term computed on the base of the approximate 

values of unknowns 

Equations introduced by pseudoobservatlons 
coordinates of control pOints 

terrain 

Equations of this kind were used by some 
V(X2) = d(X2) + 1(X2) 

authors [6] : 

where: . 0 G 
1(X2) ,. Xa-X2 
x~ • (XO,yO,ZO) 

X~ • (XG,yG,ZG) 

approximate terrain coordinates of control 
points 
pseudoobservations, terrain ooordinates ob­
tained from field surveys 

Xa) - 0, as X2 • X~ was assumed in the investigations 

3. SOLUTION OF EQUATIONS 

(9) 

The observation equations (3), (5), (6) were transformed into 
normal equations and selved with the standard Cholesky algorithm. 
The Schmidt orthogonallzation was also applied to solution of 
the equations (6) .. 

The set of observation equations (3) with conditions (8) has 
the general for.m [3]: 

A Il + B V + L ~ 0 (10) 
where: 

A . ')l., .. design matrix of unknowns 
8:~~" design matrix of oorrections to observat10ns 
fj. . - veotor of unknowns 
~ .. vector of oorrect'ions 

L - vector of free terms 
m m - number of observation equations 

n - number of unknowns 
k - number of condition equations 

Equation (10) can be written in the form: 

[ :: JA + [_~1 1 ~2-1' r~:j + [~:j = 0 (11) 

where "1" pertain to observation equations, While H2" to oGndi­
equations. 
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The weilhtmatrix has the form p= [_~L[_~ _] 
As the matrix B::: - I the equations (11) reducQ to t 1] : 

-1 
A~ (AT~A) AT~ L (12) 

where: 

~:= l-6~+1132-~C62Tl~1-J 
so the whole problem is simplified to an ordinary parametric 
ease .. 

Every control point emeries only once in the condition equa­
tions (10), so the matrix B2m~k can be transformed to a more 
condensed form 83m~4f what saves a lot of computer memory. 
The vector of corrections V can be computed with the formula: 

v = r.':b..1 = r -1 ~, A -1- L ~ J ( 13) 
l V~ rP2 B2 P3 ( Azf::l + L~ . 

The equations (9) were sometimes applied as a supplement to 
the equations (3) or «3) + (7», in order to minimize correo­
tions to the terrain coordinates of oontrol points. Together 
with thea a special matrix of weights, aocount1nc for accuracies 
of geodetic surveys, eas used. 

4. THE INVESTIGATIONS AND THEIR RESULTS 

1'. The a1m and the method of the investigations 

. The investications were aimed at answers to the three f0110-
wine questions: 
a) which form of the eollinearity equations: (3), (5) Qr (6) is 

more advantqeous to·the elaboration of a. single terrestrial 
stereogram? 

b) which of the two: the Qollinear1ty equations (3), or the co­
planarity conditions (8), are more advantageous for observed 
po~nts which are not oontrol points? 

0) does ~he introduction of pseudoobservation equations, per­
tainina to terrestr1alcoordlnates of control points, brin,; 
any and what profits? 
Several tests were run in order to find answers to the above 

questions. Computer-simulated test fieldS of 100 to 300 points 
were.used. The investigations were limited to stereograms of 
parallel axes of oameras and base-length ratios between 1:2 and 
1:20. The oonclusions were drawn on the base of the analysis of: 
- t~e errors Qf terrain coordinates of newly determined pOints, 
- true errors of orientation parameters of the images, 
.. convergenoe of the iterative solution of equatiorls, 
- coefficients of correlation between unknowns. 
The correlation coefficients were determined with the formula: 
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(14) 

where: 
~ij - coeffioient of correlation between unknowns i and j 

G1 t OJ - variances the unknowns 
COy (i,j) - of the unknowns i, j 

4.2. Conolusions 

• Question a 

equations (5) (6), as applied to a sin­
gle stereogram, showed relatively large correlations between 
the unknowns. In equations (5) our attention was drawn. by co­
rrelations between corresponding parameters of orientation Qf 
both images: the coefficient ~ ranged between 0.8 and 0.95. In 
the equations (6) very large oorrelations occured between Xo' , 
Yo' , Z01 and the remaining parameters: ff] ranged· 
between 0 and 95. comparison: the equat10ns (3), when 
applied to same cases, gave substantially lower correla-
tions, w1th~ between 0.2 and 0.4, and only exoeptionally rea­
ching 0.:5 to 0.95. 

It.. is. probably due to these high correlations, that the eon­
vergence of solution of the equations (5) and (6) was 2 to 5 
times slower than case Qf equations (3). The true errors of 
the computed terrain coordinates of the orientation para-
meters were, case equation (6), usually several 
times than equations ( • rare osses the 
accuracies were COM!arable. 

The equations (5 and (6) give results sim1llar to these gi­
ven by equations (3 , proyided that the oorreotions to the left 
projection centre (Xd • Yo' , ) are not asked for. In this 
case also the correlations between unknowns determined with the 
equations (5) and (6) are significantly smaller. 

On the base of these invest1gations one can say, that equa­
tions (3) are muoh more convenient for elaboration of a single 
stereo~ram, than equations (5) or (6). addition. the equa­
tions (5) and (6) oan be used only f9r geodetio control pOints 
and only for a single stereogram, what excludes the use ofaddi­
tional, separate photos and oreates diffioulties when joining 
separate stereograms into one, simultaneously adjusted block. 

4.2.2. Question b 

Numerous tests have shown, that the aocuracy of computations 
practioally does not depend on whether points other than con­
trol pOints are treated with ool11nearity equations (3) or with 
theooplanarity conditions (8). So the use of ooplanarity con­
ditions for strengthening of the collinear model, a methodre­
commended by some authors [5] for oases of poor geometry of the 
model, does not help much. 

The economic side of the problem is totally different. With 
the coplanarity conditions (8) we obtain normal equations oon-
taining significantly unknowns case of the 



sive use of equations (3). Large amount of computer memory can 
be also saved thanks to sparsity of the matrix 82 (equation (11». 

Let us examine the following case. A stereogram contains 
3-5 control points and 50-100 additional check points. Using 
the equations (3) for all points, we arrive at normal equations 
oontaini~ about 6 times more unknowns than in case ot oondi­
tions «3) + (7». In addition, the profile of the norm~s ge­
nera.ted by equations (3) is about. 5 times larger, than in case 
of oonditions ({3) + (7». 

The economio profits brought by the ooplanarlty conditions 
diminish with the growth of the number of Simultaneously adjus­
ted stereograms. 

4.2.3. Question 0 

Th~ investigations have shown, that the pseudoobservation 
equatio:n.s of terrain ooordinates of control points are an im­
portant add! tlon to the model. Through proper weighting of the 
equations (9) one can include accuracies of geodetio surveys of 
the oontrol pOints into the adjustment'.; 

The terrain coordinates were disturbed by random errors fer 
the analysis. Comparing the results it was found, that errors 
of the new~ydetermlned coordinates$ eomp'Uted in the model, 
which kept all control points fixed, were about 1.·5 times lar­
cer, than corresponding errors obtained with the expanded model, 
which allowed a weight matrix to be associated with coordinates 
of the oontrol points'. 
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