
GENERAL DATA INTERCHANGE LANGUAGE 

Fred C. Billingsley 
Jet Propulsion Laboratory 

Pasadena, California 

INTRODUCTION 

With the advent of remotely sensed digital data and the development of 
digital information systems, the need for interchange of digital data has 
become a critical part of science research. Although this need has been 
felt for a number of years, the increasing use of diverse data sets on 
diverse computer systems has exacerbated the data interchange problems. 

To date, most of the attempts to minimize the interchange problem revolve 
around the establishment of standard formats. Individual disciplines and 
projects have solved their data interchange problems by defining formats 
specialized to the applications. While these have been satisfactory within 
the various closed systems, they generally have proven too specialized to 
be adopted by later projects. 

That this has not proved to be a panacea is evident from the the number of 
new formats which continually appear. The publication of the ISO 
(International Standards Organizatrion) 7-1ayer Open Systems Interchange 
model has clarified the real source of the problem: the various formats 
are typically defined in terms of users' applications, thus residing at the 
ISO Layer 7, the Applications Layer. The interchange is carried out in 
Layers 1-5, which define the media, transport sessions and protocols. 
Missing from consideration is Layer 6, the Presentation Layer. This layer 
arbitrates the various representations required by providing a location to 
define the standard representations of the logical entities, numerical 
forms, and the relationships between them, as these are used during data 
interchange. 

The use of programming languages for data description during interchange 
has not been satisfactory, due to inabilities of the various languages to 
carry the required information and their overt intention of hiding the 
coding details from the programmer. In addition, the multitude of languages 
and the difficulties of translations between them prevent anyone from 
serving all users. 

Therefore, what is proposed is the development of a new language, to be 
used at ISO Level 6 for data description during interchange. Sufficient 
consideration has been given to this topic over the last 18 months that it 
is now felt to be an achievable task. Such a language is being developed at 
the Jet PropUlsion Laboratory (JPL) as part of a NASA task. When complete 
and implemented, it will provide a discipline- and machine-independent 
method of describing discipline-dependent data. This will provide a method 
for preliminary parsing of a received data file, which in turn will allow 
relatively simple machine-dependent software to be coded to match the 
(target) machine and programming language to be used. 

80 



Ease of digital data interchange across diverse systems is influenced by 
several factors, resulting in an n2 problem: 

n = a(pplication) x m(achine) x l(anguage) 

where there are n combinations at each of the generating and receiving 
ends. This suggests several approaches to reducing n2 which may profitably 
be used tegether: 

1) reduce the squared term by providing a single, common interface with 
machine readable data descriptions; 

2) reduce "a" by encouraging disciplines to provide a set of format 
families which may minimize the proliferation of new formats; 

3) reduce "m" by defining the common interface machine representations in a 
universally-readable form, thus minimizing cross-machine problems; 

4) reduce "1" by defining the common interface in a way 
facilitate conversion at the receiving end to conform to 
language requirements. 

which will 
the target 

The success of item 1) will depend upon the ability to describe the files 
adequately to allow machine receipt and processing with a minimum of human 
intervention or special logging programs (item 3), and the ability to 
interface the received file with the various programming languages in which 
the input and processing routines may be written (item 4). The proposed 
language attempts to solve this problem set. 

Before considering the proposed development (the data definition approach, 
item 1), let us first consider a model of the process. 

MODELING THE PROCESS 

Let us first consider the interchange process generically, with the desire 
to develop two concepts: 1) separation of the transfer process into layers 
pertaining to. generic description of whatever data is being transferred, 
and 2) providing data structure by reference as well as from attached data 
structure definition. 

Figure 1 illustrates the elements of the transfer process. 

SOCRCE DATA DATA: TRANSFER: DATA DATA RECEIVED 
: INFORMATION : FORM 1 : FORM 2: PROCESS: FORM 2 : FORM 3 : INFORMATION : 

A A ---------------------- ---------------------------- ----------------------
X'form 1 X'form 2 

Figure 1 - Simplified Model of the Information Transfer Process 

In terms of the model, the intent is to convert source data (Form 1) to a 
Standard Interchange Form (Form 2) which will convey the formatted data 
items plus format description, schema information, and topology information 

81 



from a source to a target (Form 3). The source data is thus transported 
from its resident hardware configuration to become the target data on a 
potentially different computer. The transfer should result in no loss of 
data content or distortion of relationships between data fields. 

The first transformation allows conversion of the data in the first machine 
to the standard interchange form, if desired, which is conveyed in some 
manner to the second machine, where a second transform regenerates the 
data, in the desired form. The transformation routines will constitute a 
language and syntax which must be discipline and machine independent. It 
will be seen that the transfer form may consist merely of a proper 
description of the data, with little or no actual data transformations. 

The conversions to and from the mutually agreed upon transport medium and 
the physical delivery of the medium (this includes electronic 
transmissions) constitute the actual transfer. This may be by magnetic 
tape, floppy disk, or other physical media, or by electronic transmission. 
Common, inverse conversion routines are normally relied upon for mutual 
understanding of the conveyed bit pattern. In a heterogeneous environment, 
and in the absence of (for example) standard bit-pattern representations of 
binary characters on magnetic tape or floppy disks, these quantities must 
be specifically defined. For purposes here, this will be considered as a 
media problem, to be handled by media protocols. Thus, whatever the medium 
receives, it delivers. This is the spirit of the ISO 7-1ayer model. 

Note that the data transfer model does not concern information per see The 
information is assumed to be already coded into the data; 
misrepresentations of the information vis a vis the data will not be a 
concern of the data transfer process, although it certainly is a major part 
of an information transfer process. 

This model bears a close relation to the ISO Open Systems Interconnection 
(OSI) 7-layer model. The data transfer process, drawn in a form often used 
in explaining the OSI, is shown in Figure 2. 

LEVEL 7 (APPLICATIONS LAYER) LEVEL 7 

CONTAINS A DATA FILE INCORPORATING 
THE DATA STRUCTURE DESIRED 

UNDERSTANDS THE STRUCTURE OF THE 
DATA FILES AND DOES APPLICATION­
SPECIFIC PROCESSING 

LEVEL 6 (PRESENTATION LA1~R) LEVEL 6 

DEFINES THE RULES FOR BUILDING 
AN APPLICATION-INDEPENDENT 
LOGICAL AND CONCRETE DESCRIP­
TION OF THE DATA FILE 

PARSES THE MESSAGE TO RECOVER THE 
DATA STRUCTURE BY KNOWING THE LEVEL 
6 APPLICATION-INDEPENDENT DESCRIP­
TION RULES 

LEVELS 1-5 -->--(MESSAGE TRANS~ISSION)-->--LEVELS 1-5 

Figure 2 - Data Transfer Concept Using the ISO 7-Layer Model Concepts 

82 



Conversion to and out of the Standard Interchange Form is seen as a task at 
the Presentation Layer (Layer 6) level. Defining the problem in this 
manner provides the media independence by eliminating media considerations 
of Levels 1-5 from the standard intermediate form, and provides 
discipline/mission independence by describing the data bases in standard 
syntax. 

OTHER INTERCHANGE SPECIFICATIONS 

There are only two other known specifications for data description 
techniques for data interchange which operate at ISO Level 6: "Data 
Descriptive File for Information Interchange", ISO 8211-1985, and "Abstract 
Syntax Notation One, (ASN.1)", ISQ 8824 and 8825. 

SHORT DESCRIPTION OF ISO 8211 - DATA DESCRIPTIVE FILE 

The ISO 8211 standard is a transmittal format standard, to be used for the 
transmission - not processing - of any data set or structure. It is 
intended to apply to physical media as well as to communications media. The 
basic approach used is to map the sender}s information, including file 
structures such as sequential, hierarchical, relational, and indices, to 
the interchange format. The user maps his data into this form for 
transfer, and remaps this into his new format for local use. 

The standard defines a data descriptive file, DDFile, to contain a data 
descriptive record, DDR, and its companion data records, DR. The DDR 
logically precedes the data records and contains the control parameters and 
data d.efini tions necessary to interpret the companion data records. The 
DDR is the first logical record of a file other than the file labels (if 
applicable). It is expected that standard ISO File Labels will precede the 
DDFile; the Label description is not part of this specification, as it 
varies with the medium. 

Data structure definitions are contained in a combination of both a data 
definition record and a data record(s). Both must be present. 

The record components and their uses are: 

Record Component 

DDR Leader 

Directory 

Field Terminator 

Function 

Identifies the DDR 
Contains the entry map (sizes of the tag, 
length, and position fields of the corre­
sponding directory entries in this record) 
Gives Tag, length, and position (relative 
to start of the Data Descriptive section) 
of each Data Descriptive field in this 
record 

Data Descriptions Multiple entries. Structure of each cor­
responding vble Data Field in the DR. 
(This is the "data" of this record.) 

Field Terminator 

83 



DR Leader 

Directory 

Field Terminator 
Data Fields 

Field Terminator 

Identifies the DR 
Contains the entry map (sizes of the tag, 
length, and position fields of the corre­
sponding directory entries in this record) 
Gives Tag, length, and position (relative 
to start of the Data section) of each data 
field in this record. 

Have the structure described in the corre­
ponding DDR Data Descriptive fields. 

The format relies extensively on delimiters for separation of fields (which 
must be inserted during format generation). Simple fields which are text 
require no format control and none is permitted. Elementary fields which 
contain only one data type and which are delimited by standard delimiters 
need no format control, and use of format control for these should be 
avoided. ISO 6093 numeric forms are fully specified, and therefore only a 
field width or delimiter is used (no internal structure description of 
these is utilized). 

The format controls define the data structure. They take the form: 

({Y:mY:k(mY, ... ), ... }, ... ) where 

Y implies [Z:Ze:):Z(n)] , 

Z :: A signifies character data 
I signifies implicit-point (Integer) ISO 6093 ~R-1 
R signifies explicit-point unscaled ISO 6093 ~R-2 
S signifies explicit-point scaled ISO 6093 NR-3 
C signifies character mode representation of a bit field 
B signifies bit field data 

n is the field width specification 

Data fields for the I-type, R-ty~e, and S-type specify a number as a 
string of ASCII decimal numbers. Bit fields are defined as positive 
binary, only. No other numerical or binary form is defined. 

Data Records 

The data records, DR, contain the same structure of leader information as 
the DDR. Here, the leader fields refer to.the corresponding items in the 
DR. The DR Entry Map has the same structure as the DDR Entry Map. The DR 
Directory has the same structure as the DDR Directory. The DR directory 
contains one directory entry for each corresponding data field. The entry 
contains the tag, length and location of the data field. Thus, information 
to this point allows separation of the data records into the composite 
fields and identification of the structure of each field. 

The user data area is comprised of User Data Fields each followed by a 
Field Terminator (1/14). These fields are 1) contiguous, 2) located using 

84 



the field position and field length in the DR directory 3) associated with 
the corresponsing tag of the DR directory and 4) through this tag are 
associated with the proper data description in the DDR. 

ASN.1 DESCRIPTION 

The ASN.1 techniques used for the Layer 6 definitions are divided into two 
parts, each defined in a specification. ISO 8824 specifies a notation for 
abstract syntax definitions of simple field types, mechanisms for 
constructing new types from the basic types, notations for tagging the 
fields, and a number of specific useful types (86 productions, 13 character 
set string types). For each of these types, the notation, tag, and 
permissible values are given. This will enable application layer (Layer 7) 
standards to define the types of information they need to transfer using 
the presentation service. In 8824, the definitions are logical, with 
structure and encoding left to 8825. 

ISO 8825 defines a set of encoding rules that may be applied to values of 
types as defined in 8824. Application of these encoding rules produces a 
transfer syntax for such values. It is implicit that these same encoding 
rules will be used for decoding. 

The encoding of a data value of all types except external consist of the 
following four components, in order: 

identifier octets 
length octets 
contents octets 
end-of-contents octets. 

The identifier octets encode the ASN.1 tag (class number, as defined in 
3824). This consists of one or more octets, depending on the class number. 
All 8 bits of the octet are used, in a specified encoding scheme. 

The length octets provide the length of the contents component, in a 
specified manner having somewhat the structure of a linked list. The 
actual length value (binary) is assembled from certain bits in the sequence 
of octets. A special coding indicates the indefinite form, which uses the 
end-of-contents component to indicate the end of the encoding. 

The contents consist of zero or more octets, encoded as specified for each 
data value type (boolean, integer, bitstring, etc). 

The end-of-contents, when used for the indefinite form, consists of two 
zero octets. 

EVALUATION OF EXISTING TECHNIQUES 

In studing the 8211 and ASN.1, it has been found that each has serious 
shortcomings for the data description task. Some of these are: 

ISO 8211 

According to its author, 8211 was modeled after an earlier bibliographic 
interchange standard. It lacks easy expression of many of the concepts 
needed for describing science data - structures, inclusion of external1y-

85 



defined format controls, binary fields for numerical representations, and 
multiple types of data records in a file, as examples. 

Allows only one DDR per file. This makes it difficult to define more than 
one type of data record in each file. 

Provides only unsigned binary representation for binary fields. This 
prevents binary fields carrying machine representations of numbers or 
carrying enumerated values or meanings to be defined within the message. 

Has no provisions for the more complex definitions needed for commutated 
data or for data base transfers, nor for using prior-defined field 
structures. 

All data field labels must be the same length. This is a severe 
restriction which is unacceptable to at least one science corr~unity. 

Cannot define data structures by reference - the DDL must always accompany 
the data file. This prevents the external definition and registering of 
data formats for callup. 

The data file cannot be used verbatim, but must be restructured within the 
data record. 

ASN.l (ISO 8824 and 8825) 

Has gone to great lengths to serve a completely open system, which requires 
much more definition than the simpler data transfer description task. 

As an abstract syntax notation, ASN.l is heavily weighted toward 
declaration statements of the ADA or Pascal types - that is, logical 
constructions instead of specific data field descriptions. (This is the 
same reason that programming languages are unsuited for data description.) 

8825 (Encoding Rules) uses a highly-encoded identifier for the contents 
t:ype which cannot be "dumped" for human reading. It also uses an encoded 
distributed binary coding of the length field, again preventing easy 
dumping. Use of these encodings will prevent the transfer of ASCII files 
in a 7-bit mode. 

Every data entry ("encoding") must consist of a type-length-value-[end] 
sequence. This adds tremendously to the overhead, both in file size and in 
time to decode. At this time, there is no provision for a single type 
declaration to be used with multiple data entries, such as image pixels. 

Provides only unsigned binary representation or the predefined Real 
structure for binary fields. This prevents binary fields from carrying 
machine representations of numbers or carrying enumerated values or 
meanings. 

Relies extensively 
definitions needed 
structures. 
specification. 

These 

on "External" data types for the more complex 
for comrnutated data or for using prior-defined field 
defeat the concept of full descriptions within the 

86 



These encoding rules also prevent the transmission of a data file without 
extensive manipulation to generate and intersperse the various type-length­
[end] components. 

There is no apparent way to describe commutated or scattered data. 

GDIL DESCRIPTION 

The General Data Interchange Language (GDIL) concept is curently under 
development as a JPL task. It is being designed to avoid the problems seen 
with the other DDLs. Following is a brief overview of the intended GDIL 
capabilities. These capabilities, not found in other data descriptions, 
serve as the reason for developing the GDIL. 

GDIL is conceived as a media-independent, content-independent tool for 
the transfer of information between dissimilar computer systems. It is 
NOT a tool for the internal processing of information. It does not require 
the insertion of data field terminators, or any change in a user data file, 
and thus may be used to describe archived files. Machine numerical forms 
may be used and described, without modification. It permits the sender to 
describe the transferred information and to send this description 
separately or as an integral part of the transfer file. It permits 
the description of both character and bit field information in fixed­
(without delimiters) or variable-width (delimited) fields or subfields. 
It further permits the identification of fields and subfields by 
arbitrarily long names and labels which serve to give meaning to the 
data. In addition, it provides for the definition and labeling of 
complex structures and commutated data. 

GDIL structure 

Punctuation symbols used in this document areas follows: 

< > indicates a logical entity 
[] indicates optionally present 
{} indicates optional repetition 
() indicates grouping 

The GDIL Module consists of Core, Extension, and Data records. The Core 
contains information about the module and data as a whole, and the 
Extension carries the desriptions of the data fields and their 
interrelationships. 

<Module> ::= <Core> [<Extension>] [{<Datal>}] ... [{<Datan>}] 

This may also be expressed as: 

Terminated with: 
[Core Record IS2] 
Last Core Record IS3 
[Extension Record I82J 
[Last Extension Record] IS3 
[Data Record IS2] 

[Last Data Record] 1S4 

87 



where IS2, IS3 and IS4 are the ISO Information Separators. 

THE GDIL 
MODULE 
STRUCTURE 

CORE IS3 [EXT] IS3 {[DATAl IS2]} {[DATAn]} IS4 

The Core and Extension records each consist of a seies of segments having a 
single Backus-Nauer (BNF) form: 

<Core> ::= {<Segment>} 

<Extension> ::= {<Segment>}. 

Each segment consists of a Length-Type-Value series of fields: 

<Segment> ::= <Length> <Tag> IS1 <SegValue> ISn 

Tag is the segment Type (Name) 
SegValue is the Segment data contents 

where 

CORE (OR EXTENSION) 
SEGMENT STRUCTURE 

LENGTH TAG IS1: SEGVALUE :IS2(3): 
2 by~es lvble :1 by: vble 1 by 

-- -- ----- ---
\ / 

\/ 
----defines-------

1'he Length field (2 bytes) is the length of the Segment, from the [Tag] to 
the IS, inclusive. 

The GDIL may be considered as Keyword-driven, where the GDIL keywords 
are the segment tags. A standard, recognizable, group of segment tags is 
specified in the GDIL, from which a given instance may be assembled. 
This allows the building of a GDIL Module from a relatively small group 
of specification-defined Tags plus user-defined Tags. Similarly, the 
user may define keywords (Labels) for the data fields of the user records. 
These fields are described by theGDIL and may be located by application 
software using the labels as keywords. Thus, only those Tags and Labels 
necessary for the instance need be included. This approach provides a more 
flexible and extensible descriptive form than pre-defined descriptive 
formats. 

Data Field Structure Description 

The philosophy behind the structure definitions is that in 
series of bytes, there is no inherent logical structure, 
grouping of the bytes or to any numerical or logical forms 
computers. Therefore, everything must be defined. 

a transmitted 
either to the 
recognized by 

The data field structures are described in a series of entries called 

88 



format controls which are related to the 
through labels as follows: 

corresponding data fields 

The structures of externally-defined fields may be referenced using the 
EXAF (External Authority and Format) segment: 

EXAF IS1 {<Label> , <Authority> , <Format ID>} where 

Label is the user-defined label for this instance, 
Authority is the external authority being referenced, and 
Format ID is its format reference. 

New variables, arrays and complex data field structures may be defined 
once in a structure segment and subsequently used: 

STRUCT IS1 <Label> , [<Type>] : {<Format Control>} 

Format Controls describe the Integer, Real, Character, or other form of the 
data field. They are based on the set from 8211 plus others which have been 
found to be necessary. Format controls are recursive in the sense that 
format control of previously-defined structures or fields may be included 
by reference, using a preceding asterisk, in the format controls: 

STRUCT IS1 <Label> , : [{*<Labe11>}] [{<Format Control>}] 

where Labell is a previously-defined Label. 

Format Control Segments, Long and Short (PCL and FCS) are used to describe 
data records, and are structured Pogically as: 

FCL IS1 <Xref> 1 { <Label> <Width> <Offset> <Format Control> } 

FCS IS1 <Xref> , { <Format Control> } 
FCS IS1 <Xref> , { *<Format Control> } 

Xref is the identifier of the data record being described. 
Labels are the user-defined field or other aggregate labels. 
Width is the width of a data field. 
Offset is the offset of the field from the beginning of the data record. 

Datatags 

The DATATAGS segment contains an optionally parenthesized list of the user 
data field labels, to whatever depth the user desires. The allowable set 
of labels are those specified in the user application specification. The 
same labels are used in the FCL, FCS, STRUCT, EXAF, and the logical 
description segments. 

Hierarchical and Network stsuctures 

The parenthesized Datatags form will describe a hierarchical or field-

89 



subfield structure. An alternate method of description is to provide a 
list of node labels in a preorder traverse sequence from a single root 
representing the entire section of data, plus an ordered list of the 
last node of preorder traverse sequences beginning at each node 
(including leaf nodes). These two sequences are carried in the 
TRAV(erse) and LASTNODE segments. 

Network structures may be described by cutting 
hierarchical tree, and sending this plus a list of 
the LABELPAIR Segment. 

Relational Structures 

the structure into a 
the cut links, using 

Relational structures may be decomposed into a set of orthogonal 
relational tables. The structure of the lines of these tables may be 
described using the Structure segment. The column headings may be 
given as labels in a Datatags segment. 

STRUCT: <TableLabel>,Table:<FmtCtl1>,<FmtCt12>, ... ,<FmtCtln> 
DATATAGS:<Xref>,<TableLabel>«ColHdg1>,<ColHdg2>, e •• ,<ColHdgn» 
FCS: <Xref>,*<TableLabel> where 

the Datatags and FCS Xref field refers to data records by that name, and 
the FCS form indicates that each row has the form specified in the 
TableLabel struct segment. 

~achine dnd language independence will be accomplished by: 1) defining the 
transfer as a series of bytes, thus eliminating media byte-interchange 
problems such as the VAX vs IBM tape formats; 2) providing methods for 
defining binary data fields such as machine representations in such as way 
that suitable new target representations may be constructed; 3) defining a 
canonical interface as a pair of ASCII tables which describe the data 
records in such a manner that data fields may be located, read, and 
converted to the desired representations on the target machine, using the 
desired target programming language or DBMS. 

The canonical ASCII interface tables will have the following contents: 

Segment Table (for each segment) 

Segment Tag Segment contents verbatim 

Access Table (for each data field) 

Record Label Field Label Structure Length Position Format Controls 

The total set of capabilities, from the consistent segment structures, 
through the format control techniques, through the canonical interface, 
will constitute a unique and new tool for the systematic transfer of data. 
With it available, local software which will be needed to convert user 
files to and from the canonical interface will be appreciably simplified. 
This software on each end may be independent, one end from the other, thus 
reducing the 0(n2) problem to an 0(2n) problem. 

90 



CURRENT ACTIVITIES AND STATUS 

Development of the concept has been underway at JPL for about two years, 
sponsored by NASA OSSA Information Systems Office (EI) and the 
Communications and Data Division (TS). It has developed from earlier 
attempts at defining a suitable format standard for two national 
committees: ACSM National Committee for Digital Cartographic Data Standard, 
and the Federal Interagency Coordinating Committee for Digital Cartography. 

The Consultative Committee on Space Data Systems, which is designing a 
message interchange system structure called Standard Formatted Data Units, 
is sponsoring the developemnt of the GDIL as a candidate language. The 
SFDUs are intended to be used in the NASA space activities such as the 
space station; of particular interest here is the intended use in the 
ground system, in archive distributions, and between experimenters. 

A simple GDIL demonstration builder (GDB) and parser (GDP) for 
demonstration purposes has been developed through a small contract at UCSB. 
This allows interactive definition of the structure of simple files and 
display of the resulting GDIL file. It is to be used as a test bed for 
developing and validating new concepts. 

91 


