IMAGE ANALYSIS USING THE RANDOM-DOT SCREEN
MODEL: THE METHOD AND RESULTS

K.I.Voliak, K.A. Boyarchuk and A.V.Krasnoslobodtsev
General Physics Institute of the USSR Ac. Sci.
38 Vavilov street, 117942 Moscow, USSR,Commission IV

ABSTRACT. One of the classical problems on random screen
diffraction is considered, where (nondtransparent apertures are
dispersed over a dark Ctransparentd screen. The analytical
result is to determine an aperture dimension variance and other
image statistical parameters by using the Fourier transform. The
simulated and actual images are optically processed, thereby
confirming the theory developed.

1. INTRODUCTION. The mathematical aspect of image analysis
involving some integral, for example, Fourier transform is often
very similar to the known theoretical problem on interaction
between a coherent electromagnetic wave and a random screen or
another randomly inhomogeneous medium. The general solution to
the problem is rather bulky [1]. Various simplified models of
random screens have been developed for atmospheric remote
sensing [2] and statistical optics [3]. In this paper we
consider some special model of random-screen light diffraction
and apply it to the image processing so as to determine
statistical parameters of actual images.

2. RANDOM-DOT SCREEN MODEL. In many cases we deal with an image
consisting of dark Cor brightd spots of some regular form
dispersed rather uniformly against a very bright dor darkd
background. The simplest situation is a two-level image of
partially transparent round apertures, which are randoml y
distributed over a rectangular and totally impermeable screen.
Let an aperture ensemble be a realization of the probability
process in which the central coordinates and the radii of
apertures are random quantities.

In the Fourier-lens focal plane of a coherent optical
analyzer we usually observe the intensity of light waves passing
through the image transparency, namely, we take the squared
Fourier-transform modulus [F!z of the transparency function f.
The latter is a local transparency 1 within each aperture of
the number n and the square S , with "f=0 on the outerside of S.
For the sake of definiteness, 'we assume that the probability of
aperture overlapping is negligible. Then, the Fourier transform
of all N apertures of the image transparency is

N
FCEd = F 1n” explik x + ik yddx dy , 1>
h:4
Sn

where 5§ = {Cx—an)2+ Cy~bn32= qf}; r, »a and bn are the radius

and the coordinates of an aperture in the image plane (x,y>,
respectivel y; qu,kzb are the coordinates in the Fourier plane.
In the reference frame of each aperture (x'= x-a , yv'= y-b 3,
we can rewrite (12 in the form: " n
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an+ ikzbnbfjjéxpCikax + ikzy Jdx’'dy’1, (23

N
FCrs =g 1nexpCik‘
=4

Sa
where S’ = ¢(x'?%+ y’2= rzh.

Here we know that the'qinner integral in (&5 is the obvious
relation for the Fraunhofer diffraction from a round diaphragm

2nr
K = H expCik x'+ik y°ddx'dy’= 23 Cr Jk""+ k3, €3
n 4 2 r“i” 271 n 1 -3

sn k’sz |
which is homogeneocus in the Fourier plane due to the homogeneity
of the first-order Bessel function Jic.) of real arguments.

For the sake of simplicity, let all apertures have the same
transparency 1 =1 . Then, collecting the terms of (23, which are
dependent. on "tLhe aperture radii, into a separate sum, we have

2l _ _ N
FCED = T EXP Cikia + 1k2 b> | rnJ‘Ckr*n) . C4>
n=4i
2 2. 1/2 - -
where k =Ck™+ k™D » a4 and b are certain average coordinates of

aperture ceﬁterg Ca ,b J. A detailed account of the exponents of
(23 will be taken sgpagately.

For a fairly large statistical sample, we can replace
summation 43 by the integration over the probability density
W(rd> of the aperture radius distribution,

N (o =]
Er,J;Ck rp> = Nlrwcrd J, Ckrddr. ds))
n=1

(=]

Therefore, the mean light intensity in the focal plane, i.e.
the average Wiener spectrum, is equal to

4n212 oo 2
Nzcj r WCrd> J Ckrddrd® B>

< | Feed B =
2
k

<
3. SPECTRA AS DEPENDENT ON THE RADIUS DISTRIBUTION. Calculus of
(6D requires, in general, a lengthy algebra. For instance, let

the probability density be a universal one-peak function

werd = ¢ pf e | <7
where o and 2 are some free constants, while the norhalizing
(s o]
constant C is defined by J WCrd dr=1 : C= o ﬁ/FCﬁ), .2 is
(o]
the gamma function. Then, tge integral I= j rWlrD> Jgkrbdr equals
o
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e Bp+2d
I = Pica Ja’ + k5, cad

regp P

wher & ¢.3 is the first-kind associated Legendre function for
negativ@ arguments. With due account of the gamma-function
properties, Wiener spectrum (8> is

2 zﬁ
pFcprid®a
< JFCed B = an”L AN o o Pk, g5
k2o 0

In the simplest case 2 = 1, we have
<JFCed | o= 4n”12N%afco®+ k7R €10

It is clear from €103 that there are no spectrum intensity
maxima for a rather 'flat’ probability density W(rD.

If we are_ 1nterested in some small typical difference
kA% = kCr y the following expansion exists
_ aJ L , 47
JICkrbﬁ J1Ckr)+ kAﬁq a; z=ki + 3 CkAg,) — e +... 11>,
dz
where r = N '§ r is the average empirical radius and., hence,
=l

the linear term in (112> is zero. In addition, the cubic terms in
C11d> are alternating quantities and in our subsequent
calculations we can restrict ourselves to the second-order
accuracy © {CkArnbz}.

Let us consider the summation

N J4 k%% 2 Je

E rJCkr, DuNrJCkrD+{E Car, 3 }{kCJ— =+ I ~13J - —=1>. 18D
n k¥ 2 2.. 1 kr

n=d n= k'r =kr

Introducing the empirical radius variance IZ.‘)‘_2 = N“ECAF >%, we

rewrite (123 in the form: n=g

- - - D - z- -

Er,JyCkryd> = Nr JCkrd + N 32[kJ, Ckrd - k'rJ, Ckrd]. 13

n={
Finally, the total mean Wiener spectrum is
,  ATLANE _ b B _ .
<'FCf)l >= . {rJ, Ckrd + ég[k%,Ckr)“ kzr% Ckrd>1x7. C14>
k
Az seen from (142, the radius variance, as well as other high

momenta, distort markedly conventional diffraction (33.

4. COMPLEX SFECTRAL COMPONENTS. The exponents of (23,which
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are dependent on the coordinates and are independent of the
radii, will be singled out into a common sum:

2l _ _ N
FCfD = * Nr*J1Ckr*) E exp Cik,a, + ik, Db, 2. €155
=4

To account for the regular complex spectral component of the
uniform distribution of apertures, we suggest that the apertures
are placed at the knots of a rectangular grid:

N N N
= Eexp Cik a + ik b 3= [ et PP E etheas CL1&d
n=4 p=4i =4

where N, and N, are the numbers of knots on the two grid sides
CNy ®» N, = N3O, h and s are the grid constants in mutually
orthogonal directions. Calculus of (16) yields

N + 1 N + 1
ain C = kih) sin C S kzsb
GCki,k2)= r h P e 470
sin e sin~—"
2 2

It is evident from C172 that in the spectrum there arises a
reciprocal rectangular grid having a very bright central spot.
For an isotropic sguare screen, where k sk ==k, N = N = F\J s the
grid steps h,s tend to the mean spacing *h * 2

To illustrate the effect of random deviation Aa ’,Abn from the
regular—grid knots, we can consider, for the sake"of simplicity,
a one-dimensional randomly distorted grid:

N e, N kph k 2
e [ exp ikCph+Aa,>= [ e‘ PRt + ikda, - FCAa, > +. .. 1.€18
p=d p=i p=4

Proceeding to empirical statistical momenta and omitting odd
expansion terms, we find that

N ik k 2 2 k 4
e P = GCkI[1- = <CAa, D> + = <CAa D‘) + ...1 ciao
p=1 2 P 12 P
N+
sin P kh
where G(kd> =
kh
sin —'é

Relation (190 demonstrates clearly that the spectr al envelope
may be highly modulated at finite values <CAa D > and higher
momenta. The above consideration alse remainsvilid for random
devi gti ons Abe, 3 Hgg e one can consider that
<CAaP)> = <CAb 3> = ¢h - 2r3-2. Thus, the final Wiener
spectrum of our model image is
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Pig.1l. Formation of spectrum (20)

Fige.2. Poor sample of small apertures
dq (a) and its spectrum (b)
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4771 2N?

<|FCed |BH= ———— &kdiry Ckrd+ Al%ci- B, €202
k
where D2 _ 2 - 2
A = z=[KJ Ckr> - k'rJ,Ckrd]
is the sum of terms describing the aperture radius
digtribution, kg
B =1{- <Chapd 2+ X <cAaPD ‘5

iz the analogots sum for {geir spacling distribution. &%ckd is
the coefficient defining a speckle structure of the Fourier
transform.

We assume the interdependence of the various random quantities
considered to be negligible. The shape of final spectrum (203
is explained by the graph of Fig. 1 plotted for small k,
O < k < 10. Fig. 1 presents : (iD the undisturbed spectrum
M oC r Jo Ckrd> _of the averaged aperture; (iid) the spectrum
modulation M{— [rJ ckry> + A1Z by radius statistics; Ciiid the
additional modulation M, = ¢i- B* by complexz spectral
components ; (iv) the high-frequency content M3= GCkl, i.e.
the speckle structure of the spectrum; and (vD the resulting
spectrum <'F| = MoM1%z¥3 » respectively.

5. COHERENT OPTICAL PROCESSING OF SIMULATED IMAGES. To verify
our model we have utilized the conventional optical Fourier
processor [4]1. A He-Ne laser of wavelength 832.8 nm was used as
a source of coherent light. The Fourier lens was 180 mm in
diameter and had a focal distance of 3.7 m. We used also an
immersion cell to avolid phase distortions introduced by a
transparency photofilm. The resulting errors of establishing
spatial spectral freguencies were around three per cent, while
those in spectral intensity measurements were defined by
gpectral speckles and were arcound ten per cent.

We have been able to preparate special images proximating

fairly well the developed mathematical model and then we

succeeded in their optical processing. The image transparencies

and their spectra are presented in Figs.2 through B. Here one
can see two sorts of round transparent apertures with diameters

d =225 £ 0.05 and d = 4.35 £ 0.05 mm, respectively, which are

distributed rather frregularly over an impermeable square

screen.

The spectrum of a poor sample of the small apertures d,(Fig. &>
is wvirtually identical to the Fraunhofer diffraction from a
single round aperture and the spectral intensity level is close
to that of (30 . Meanwhile the spectrum of a more
representative sample of d (Fig.3) is, in general, analogous to
that of Fig.2 although it is notable for some peculiarities.
Namely, the former consists of distinct random speckles, as
predicted by the theoretical term My, and its central peak is
split by the radius modulation M1. Figs.4 and 5 show the scale
transform of images; for example,the spectrum of the apertures,
d, (Fig.4> is wuniformly contracted in comparison to that of
ng The image of Fig. 8 containg apertures of the two
dlameters. as the limiting case of random-radius
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Fige3. More representative sample of
d1 and its spectrum
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Fige4. Scale transform of image and
spectra: a sample of d‘,2

Fige5+ Apertures of the two diameters
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Fig.6. Actual photodraphic image and its spectrum

Fig.8. Actusl imege: a scale gpectrum
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modulation giving rise to a double set of spectral rings.
6. SPECTRAL ANALYSIS OF ACTUAL UNDERWATER IMAGES.
Our theoretical model fits very well the actual photographic
images (Figs. Ba-8ad of an oCean bottom cover ed by
ferro—-manganic concretions. In Fig. 7a one can distinctly see a
round lag among concretions, that may be used for image
scaling. Figs. 6b-8b show spectra of the bottom images, while
Fig. 8b also gives a scale—grid spectrum. All the spectira, as
a whole, are speckled round spots of higher intensity at their
periphery. The central sharp peak in the spectra has been
additionally screened for the sake of better presentation. The
specific ’cross’ in the spectra is the effect of diffraction
from the boundaries of rectangular images. Fig.8 plots the
photometric density of the spectrum of Fig. 6b, averaged over
an angle of 18° along the 45°- direction with the vertical. The
intensity ’dip’ in the middle of the plot results from the
above-mentioned additional screen.

The model developed here predicts that the spectrum lies in the
central Airy area of the mean-radius aperture (Cconcretiond. The
shortage of intensity of wavenumbers near the half-diameter of
the gspectrum is, primarily, a statistical effect of variations
in concretion dimensions and spacings. But the former effect is
relatively weaker because, even at 2h%ghly variable radii
Fmin€$ T & Mpox = @'min s the value of k'D " responsible for the

random modulation M, , does not exceed k2% q. Meanwhile, under
the actual condition h = 4r, the random modulation M, by
concretion_ = spacings is approximately proportionall to

ki > k*r®,9. In general, our model may be helpful to
elaborate various numerical algorithms +to be used for
determining the variances of concretion dimensions and
spacings.

Practically, coherent optical processing may establish the
capacity of minerals in an interrogated area of the ocean
bottom. Using the grid spectrum (Fig. 8b) and the lag scale
C(Fig. 7a) we readily define the most probable dimensions of
concretions. Assuming that ‘the latter are spherical in the form
and calculating their mean number over a certain specific area,
we establish the total mass of a mineral lying on this site of
the sea bottom.

7. CONCLUSIONS We have developed a statistical mathematical
model of light diffraction from a nontransparent screen
randomly covered by transparent apertures. The contribution of
random variations in the aperture diameters and spacings has
been determined, which strongly affects the Fourier spectra, as
compared to the conventional diffraction from a single round
aperture. The theoretical c¢conclusions have been verified
experimentally by means of simulated random screens used as
transparencies in a laser Fourier processor. Finally, we have
suggested and realized a method for determining the dimensions
of ferro-manganic concretions on the basis of a cocherent
optical analysis of sea-bottom photolmages.
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Fig.9. Photometric density of the spectrum of Fig.6
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