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ABSTRACT

As 3D GISs (geographical information systems) become increasingly important, new database technologies are needed. This
paper presents ideas about requirements for a 3D GIS database for urban environments. A high emphasis is given to the
support of a fast photo-realistic visualization, thus expanding the scope of functions offered by traditional GIS databases.
Required functions to allow an efficient visualization are: e Perspective querying (to extract all objects of the database located
a pyramid of vision). e Support of the level of detail concept on database level (to extract objects in varying detail according
to the size of the objects on screen). e Image compressing/decompressing/caching (to offer a scale-able compromise between
speed and data volume).

KURZFASSUNG

Mit der zunehmenden Bedeutung dreidimensionaler geografischer Informationssysteme (3D GIS) zeichnet sich die Notwendigkeit
neuer Datenbanktechnologien ab. Herkémmliche GIS-Datenbanken sind insbesondere da tiberfordert, wo es um die schnelle
Visualisierung der Daten geht. Erforderliche neue Funktionen sind: e Perspektivische Abfragen (um alle Objekte zu ermitteln,
die momentan sichtbar sind). e Unterstiitzung des Level-of-Detail-Konzepts (um Objekte je nach ihrer aktuellen GroBe am
Bildschirm in unterschiedlichen Qualitdtsstufen zur Verfiigung zu stellen). ® Automatische Komprimierung / Dekomprimierung
von Bildern.

1 INTRODUCTION / MOTIVATION 2 RELATED WORK

An increasing number of users of GISs for urban environments  This section summarizes some recent papers on rendering

asks for 3D extensions ([SBM 94], [RG 95]): and storing complex geometrical models. All papers present
ideas to improve the LOD (level of detail) concept, which
will be crucial for any 3D GIS application supporting inter-
active photo-realistic rendering. LOD is a mechanism used
in computer graphics to improve the drawing speed of com-
plex scenes [Cla 76]: Each object is stored several times in
different levels of quality (levels of detail). During visualiza-
tion each object is drawn in the optimal level of detail. The
chosen level depends on the size of the object in the current
view. Objects that appear small can be drawn in little detail
(and therefore very fast) without loosing quality; in contrast,
The step from 2D to 3D causes several problems, which can  ©objects near the point of view that cover a lot of space on
be summarized in three points: building 3D models, storing ~ the screen need to be rendered in full quality.

them and providing a user interface to visualize and manip-
ulate them. This paper is focused on the latter two points.
It discusses techniques to store and visualize huge 3D data
sets.

e Scientists want to simulate noise, heat and exhaust
spreading in big cities.

e Telecommunication companies need 3D data to calculate
wave propagation in urban environments.

e Architects want photo-realistic models of existing build-
ings to plan new ones and to visualize the resulting
scenery.

e Tourism agencies want to offer virtual reality models of
destinations they are offering.

Although the LOD idea is quite old and lots of applications
make use of it, several problems remain unsolved. The most
urgent one is probably building LOD models: although sev-
eral scene editors already support the LOD concept, none is
Currently, two research groups are working on this topic: on able to build LODs automatically in good quality yet. There-
the one side, maintainers and developers of GISs are trying fore, most existing LOD models are still built manually, thus

to expand their 2D systems with 3D features. On the other increasing the already high cost of creating a model at all.
side, lots of efforts come from computer graphics experts, [HG 94, SS 95] explain algorithms for building lower levels of
who want to visualize scenes of growing complexity faster  detail from a given 3D model in high quality. Until now, these
and faster. algorithms have been restricted to polygonal models and do

- . . i h.
Unfortunately, there is little interconnection between these not deal with textures, thoug

two groups. This paper tries to fill this gap. It gives an In its original concept LODs offer different geometric rep-
overview of recent research activities (section 2), points out resentations for one object. [MS 95] propose two improve-
requirements to a 3D GIS database for urban environments ments: (1), the LOD concept can be adapted to store the
(section 3) and discusses issues of implementation (section  entire model (e.g. a city) in one hierarchical structure. (2),
4). The paper ends with a short outlook (section 5) and "impostors’ replace traditional LODs: Impostors are very simi-
some references. lar to LODs; they are more versatile as they include additional
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informations such as the view angle. For example, the im-
postor for the front view of a building might consist of only
one rectangle. Although this idea might produce higher qual-
ity pictures, building an impostor model is even harder than
building LOD models.

[FS 93, Fun 93] describe the Sodahall walkthrough system:
This system allows real time movement through a complex
building. The visualization is based on the LOD concept. To
choose the appropriate level of detail, time constraints are
used. If the scene gets more complex during a walk through,
the level of detail is reduced accordingly. Thus, a nearly con-
stant frame rate (independent of the complexity of the visible
scene) can be achieved. The entire model (350 Mbytes) is
stored in a database system especially developed for the So-
dahall system. This approach guarantees maximum speed
but lacks multi user access, standard queries etc. — features
that are indispensable for a GIS.

[KLR 95] describe a system called Virtual GIS, which uni-
fies a textured DTM (digital terrain model) with simple GIS
data (buildings). The system uses the LOD idea extensively
to minimize the amount of DTM data actually drawn and
achieves 'real-time visualization’ (defined in the paper with a
guaranteed rate of 10 to 15 pictures per second). The system
is however limited to simple terrain models with a constant
triangle size.

3 3D DATABASE DESIGN

3.1 Relational versus object oriented databases

Currently, most GISs are implemented either using relational
databases (RDBs) or using non. standardized application-
specific databases [Sin 93]. The main reason for this
fact is that nearly no commercial object oriented databases
(OODBs) were available until about five years ago.

The disadvantages of RDBs become obvious with a close look
to the nature of GIS data: Broadly, GIS data means arbitrary
data types including numeric and short string data, large un-
structured data such as textures, complex structured data
such as the 3D geometry of buildings and finally compound
objects that are comprised of such data.

RDBs lack the mechanism to deal with this kind of data:
Their tabular approach does not allow a suitable modeling
of complex hierarchical objects. Although most RDBs sup-
port binary large objects (BLOBs) to store graphical data
(e.g. textures), these cannot be queried in the same way as
other data types. Besides, most RDBs suffer from a severe
performance loss if many BLOBs are used.

In contrast, OODBs allows building complex hierarchical data
models easily. (Most commercial OODBs offer native support
for C++ and allow to store any kind of objects that can
be created with C++.) OODBs are optimized to deal with
binary data efficiently and offer much better performance in
this respect. All benefits of RDBs — an easy to use query
language, data distribution, networking, versioning — are still
available (although sometimes in a modified form; e.g. most
OODBs do not support SQL but improved dialects that offer
a better handling of object). Thus, OODBs should be an
obvious choice for any new database system for a GIS.

3.2 Amounts of data to be expected

In September 1994 a city block with 28 buildings in Vienna
was modeled in a pilot effort ([(GMB 95], figure 1). It took
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about 180 Mbytes to store this scenery with uncompressed
photo textures at a pixel size of 4 * 4cm?. More than 99
percent of this data was needed to store photo textures. First
experiments proved that it would be possible to compress
textures to about 3 percent of their original size without a
significant loss of quality.

Figure 1: One house of the Vienna pilot project

Since Vienna has 220000 buildings, this data set can be con-
sidered to represent —8—01—05 of the entire city. Extrapolating
these numbers, using image compression, considering some
overhead for indexing in the database etc. it should be possi-
ble to store a 3D GIS model of Vienna in 100 to 200 Gbytes.

This first approximation does not consider objects other than
buildings (e.g. plants, trees etc.). The interior courtyards
of buildings were neglected, too. Another important feature
that was dropped in this approximation would be versioning
(allowing to view the data at any stage/time since the start
of the database). Therefore, it seems a realistic assumption
to expect at least 500 Gbytes of data.

3.3 Visualization

During the past ten years a lot of effort has been invested
in improving the drawing speed of complex scenes, regarding
hardware (z-buffering, texturing etc.) as well as software (e.g.
LOD concept). These techniques do not solve the problems
that appear when dealing with really big models, though: at
the point where the entire scene can not be held in RAM any
longer, it is not the rendering the scene which turns out to
be the bottleneck, but rather retrieving the 3D data from a
database.

To allow interactive working with a big 3D GIS model, it
is crucial to minimize the amount of data transferred from
the database to the visualization software. It will be a main
function of the database to act as an intelligent filter, re-
ducing hundreds of Gbytes of available data to a flow of a
few Megabytes per second, that can actually be drawn in
realtime. (The exact amount of data that can be handled
depends primary on the rendering hardware. One important
key number is the number of textured triangles that can be
drawn per second.)

3.4 R-trees, bounding boxes and the LOD concept

R-trees have been established as one of the most important
data structures for indexing spatial data. Lots of 2D GIS ap-
plications rely on R-trees or on one of their variants. R-trees
consist of overlapping rectangles that embrace geometrical
objects (e.g. all houses of a district). R-trees can easily be
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expanded to 3D, now using hierarchically structured boxes
instead of rectangles. '

In'a 3D model, R-trees would be used to store 3D bounding
boxes (figure 2): At the root level, one gigantic box embraces
the entire city. In this box, several smaller boxes contain
districts of the city. Within these city-boxes, smaller boxes
might be used to build bounding boxes of streets. The next
R-tree level consists of bounding boxes holding buildings or
other elementary objects. Finally, the R-tree concept might
be used to partition buildings into even smaller objects —
roof and body, in the next level windows, doors, chimneys
etc. Thus, R-trees are a data structure that is simple to
manage and yet allow the storing of data of an entire city in
surprisingly few levels.

Notes: The previous paragraph only describes the basic con-
cepts about how R-trees could be used to store 3D graphical
data. In reality, some more levels might be useful to limit
the number of objects within one level. Please note also that
the R-tree is organized in a three dimensional way from the
beginning. Of course the z-coordinate is of little interest in
the higher levels of the R-trees, as most big cities are more or
less flat (e.g. the z-coordinate range is very small when com-
pared to the range of x- and y-coordinates). The z-coordinate
gets more and more important in deeper levels of the R-tree,
where buildings or other objects are split to sub-objects. This
consequent 3D design makes it possible to use the database
for objects other than-cities, e.g. to build a VR-model of a
museum, an airport or of a big shopping center.

As the title of this subsection suggests, R-trees can easily
combined with the LOD idea. Each level of the city-R-tree
simply is a level of detaill The only poirt where the R-tree-
concept must be expanded is the data stored within one box:
While traditional R-trees up to the second lowest level only
contain a list of sub-boxes (or sub-rectangles in 2D), LOD-R-
trees also include some graphical information that is sufficient
to visualize the interior of the box in a coarse quality. If this
quality is not sufficient for a certain point of view, a more
detailed graphical description can be obtained from the sub-
boxes within the current box.

3.5 On our flight to the Stephansdom

The best way to explain this concept is an example: imag-
ine, you are flying in a helicopter towards Vienna. Suddenly,
getting around some hills, you see Vienna for the first time.
You are still quite far away — thus Vienna is only a more or
less flat area covered with buildings and plants and divided
by the Danube. To visualize Vienna from this viewpoint, a
very simple DTM-model of Vienna with some coarse textures
of aerial images is sufficient. This data is stored in the outer-
most R-tree-box; there is (yet) no need to traverse the R-tree
to any deeper level.

As you slowly come nearer, some outstanding objects - per-
haps the radio tower, the UNO city building complex or what-
ever — must be visualized in more detail to preserve a photo-
realistic quality. The graphical data needed for rendering can
be obtained from the R-tree on the next deeper level. On your
flight to the center of Vienna, this process will constantly be
repeated, getting exact graphical models of objects near the
helicopter out of lower R-tree-levels and less exact models of
objects far away form higher R-tree-levels. The amount of
data needed to draw the entire scene will stay approximately
stable; objects near the viewpoint will contribute most of this
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Figure 2: Examples for some R-tree levels (all levels are
3D, although some are shown only as 2D projections)

data.

When you finally land in front of the Stephansdom (a big
cathedral in the central city), this extraordinary building will
be drawn in the best possible quality. While standing and
staring at the picture it will improve progressively as more
and more data in growing levels of detail is loaded from the
database and used to refine the picture. Technically speaking,
you are now in at the bottom end of a very small sub-tree of
the entire R-tree of Vienna.

3.6 3D spatial access, perspective querying

As the data structure is in a high degree hierarchical, spatial
queries will be organized in a hierarchical way as well. Search-
ing for an object in 3D-space means traversing the R-tree.
As the whole tree is based on bounding boxes, a few small
queries in each level of the R-tree are sufficient to find objects
in 3D-space. (Small means that each box of the R-tree only
contains a rather small number of objects (sub-boxes), e.g.
all houses of one (part of a) street.) Searching in 2D R-trees
for a point or for all objects within a rectangle or box does
not impose any difficulties.

What is really new when compared to traditional R-trees ap-
plications is querying for all points within a pyramid or cone
of vision. It will be that kind of query that will be needed
most frequently while visualizing a scene. A straightforward
realization of a perspective query would result in complex ge-
ometric formulas that cannot possibly handled by any query
language however sophisticated. Besides it would result in
a huge number of objects retrieved, although most of them
would contribute little information actually needed for visu-
alization.

A more intelligent scheme is needed. To simplify the query
the pyramid of vision can be split into axially parallel boxes.
This splitting has an obvious disadvantage: it results in a con-
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siderably higher volume, as the boxes need to fully embrace
the pyramid of vision. On the plus side, queries for objects
within the resulting boxes can be done much faster — all you
need is simple bounding box tests. Besides, it is possible to
process queries for different boxes in different ways (figure
3): The first query would only consider the box nearest to
the point of view. With the resulting objects a first visual-
ization can already be done. In the meantime, objects for
boxes far away from the point of view can be queried. As
these objects distribute less information (foreshortening), the
query can be stopped at a higher level in the R-tree. (This is
equivalent to a lower level of detail.) Thus, perspective query
does not mean simply retrieving all objects within a pyramid
of vision; the LOD concept is also involved — otherwise its
implementation on database level would not make sense.

/

pyramid of vision
(2D projection)

query for objects far away from
the viewpoint , low LOD

query for objects in some distanca
form the viewpaint, medium LOD -

viewpoint  query for objects near the
i Lop

viewpaint, high

Figure 3: Successive queries for objects within the
pyramid of vision; the figure shows a 2D projection of
the 3D pyramid and its bounding boxes )

3.7

As was mentioned above, in a first pilot project, uncom-
pressed photo textures consumed more than 99 percent of
the models memory. Simply compressing this textures with
JPEG or another algorithm results in considerably smaller
memory demands. To avoid a tradeoff in speed, the textures
used most recently should be cached uncompressed by the
database. A simple LRU (least recently used) algorithm to-
gether with a variable cache size limit might be used to decide
which bitmaps may stay uncompressed in the cache.

Handling textures

To support LOD, textures will be stored as multi resolution
bitmaps (bitmap pyramids). As the cache size'is always a
limiting factor, it is neccesary to cache bitmaps in a fow LOD
if memory restrictions do not allow to cache them in higher
quality. This would allow a fast visualization at low quality.
If higher quality is needed, compressed bitmaps need to be
reloaded and decompressed again.

4 IMPLEMENTATION ISSUES

4.1 The CyberCity project

The above described database will be one cornerstone of the
CyberCity project. In this project the Institute for Computer
Graphics in Graz is developing techniques to store, manipu-
late and visualize three dimensional data of urban environ-
ments. Important research tasks apart from the database are
(semi-) automatic 3D object reconstruction from available
2D GIS data and aerial images, texture extraction from aerial
images and facade photographs [GPL 95], object refinement
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(geometric modeling) from facade photographs, development
of a line camera to do facade photographs more efficiently
[MD 96] etc.

4.2 Software and data format standards

Of course it is tempting to restart software development from
scratch: This would result in an optimal performance and
in software modules fitting together. However, this would
also mean spending years of manpower to write code that
has already been written in a similar form, defining another
data format incompatible to all previous ones. To avoid these
drawbacks, CyberCity will rely as much as possible on existing
standards:

Graphical data as well as GIS data will be stored using
a commercial object oriented database system (possibly
ObjectStore or O2).

The database will be able to import and export Open
Inventor files. Therefore, any program supporting Open
Inventor can be used for modeling or for visualization.

Although the development of the database has a GIS applica-
tion in mind, the database might also turn out to be a good
starting point for a more general VRML database.

4.3 Current work

At the moment, the OODBs ObjectStore and O, are being
used for experiments in perspective querying. A test program
to benchmark bounding box queries in an LOD-R-tree already
exists (figure 4). No final decision has been made yet about
which database system to use, though.

Figure 4: A test database consisting of 3000 empty
bounding boxes organized in a r-tree was queried for
cubes in the front octant. The result was visualized
using Open Inventor.

At the same time, software is being deveioped to build a fow-
detail model of Vienna (figure 5). The model is based on a
manual analysis of aerial photographs of Vienna. For each
building or building complex, a polygon defining the eaves
and one base point is available. Out of this data, a converter
builds 3D objects for each building and digital terrain model
(DTM). Incorrect objects (e.g. duplicate points, intersecting
polygons etc.) are either corrected or skipped. A test dataset
consisting of more than 10000 buildings will be used to test
the first implementation of the database.
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Figure 5: A low-detail model of approximately 2000
buildings in Vienna

5 SUMMARY / OUTLOOK

This paper outlined a concept for storing big 3D datasets of
urban environments. Special focus was given to fast visual-
ization. It was proposed to organize the data as one big LOD
model. For any part of the data geometric models in several
quality levels can be used to render the scene.

On the database level, the LOD model can be stored in an
R-tree. The nature of the data (hierarchical organization,
mainly geometrical or binary data) makes the choice of an
object oriented database obvious.

The implementation of this system is the first step toward a
complete database system for a 3D urban GIS. The next step
would be a graphical user interface which allows interaction
with the data.

5.1 Building an urban Geo-Server

To make the data available to a geographically dispersed
community, techniques to distribute the data between sev-
eral database servers and to update datasets over the network
need to be developed. The implementation could be based on
the concept for a distributed central / local server concept
proposed by [Rehl 96]. Although this server (GDSS, Graz
Distributed Server System) is intended to achieve a unified
access to remote sensing image data, there are more or less
the same requirements as for the Cybercity project: network
managment, transparent data exhange and database queries,
user interaction etc.

To achieve acceptable response and transmission times, a
high speed network backbone (probably ATM) must be used.
ATM will most likely become an integrationg network in the
near future. It is designed to carry all existing and future data
services including traffic with a time relation — e.g. voice and
video — as well as data with transmission speeds up to 2.4
Gbit/sec [Pry 94, Reh2 96].

Finally, the entire dataset would be stored only at one or a few
central servers; reduced datasets could be stored locally, e.g.
all data of district Xyz in the municipal administration office
Xyz, all data about telephone lines in the office of a telecom-
munication company and so on. This concept of an urban
Geo-server would lead to a new dimension of GIS application.
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