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ABSTRACT:

This paper describes a feature-based approach for the reconstruction of 3D scene geometry. Digital images
are taken from a moving surveying vechicle. Straight lines are matched. We minimize a cost function that
incorporates feature attributes and relations between features using a branch-and-bound algorithm. An example
for the line matching in a short sequence with two image pairs is presented.

1 Introduction

1.1 Problem Description

A surveying vehicle that collects various data for GIS
databases is given. The vehicle is equipped with a
GPS recetver and wheel sensors to determine its abso-
lute position. The wheel sensors furnish 2500 impulses
per turn which are registered with a hardware coun-
ter. The counter values and GPS data are recorded
once per second.

In addition, the vehicle contains a digital video ca-
mera pair. We use two PULNiX TM 9700 cameras.
They synchronously capture grey scale images with
standard video resolution on a PC. The cameras are
mounted on a stable aluminium profile, thus their re-
lative orientation remains constant. Whenever an ob-
ject of interest appears, an operator records one or
more stereo pairs on a fixed disk. The counter values
are stored with every image pair.

The images have to be evaluated in postprocessing
by an operator who is mainly interested in the position
of distinct points and lines in 3D-space. Most objects
of interest in the traffic environment are man-made
and contain straight lines. The object reconstruction
is possible if the correspondence problem is solved. In
this paper we want to support the operator by sug-
gesting correctly matched objects or features.

If a feature is captured in two images, its position
can be determined. In our approach, however, an ob-
ject is followed in the image sequence in order to get
both a higher accuracy and a higher reliability of the
object position. Here, we confine ourselves to the use
of interest points and straight lines only to describe
objects in space.

The outline of this paper is as follows: first, the ca-
mera calibration and feature extraction is briefly de-
scribed. The matching process consists of three sta-
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ges: initial line matching, orientation of the camera
pair and final matching. The paper is concluded with
a practical example and a short discussion.

1.2  Algorithm Outline

The matching problem is often described as depending
on three items:

e feature attributes
e relations between features
e geometric constraints

Feature atiribules are used to determine the similarity
of features to be matched. Typical attributes are grey
values, line parameters or operator values.

Relations between features, however, tell us whether
a match is consistent or not: if two features in one
image have a certain relation, the corresponding fea-
tures in another image are likely to have the same
relation. Typical relations are angles and distances
between features. In some applications the assign-
ment is based on relations only, this is the case of
structural matching [8]. In principle, ternary or even
higher order relations can be used but in this paper
1t is assumed that binary relations provide a sufficient
describtion [2].

When the camera orientation is known, this infor-
mation can be introduced in form of geometric con-
straints. In our case, the relative orientation of the
camera pair is known. Then we can impose the co-
planarity constraint for points using two images: two
points can only be matched if they are coplanar.

Lines in space are completely described with 4 pa-
rameters, lines in the image are described with 2 pa-
rameters [7]. That is why any two lines in two images
furnish exactly one line in space, there is no redun-
dancy (the degenerated case where the 3D-line lies
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in the epipolar plane is excluded). A third orienta-
ted image is needed to impose a geometric constraint.
The only escape from this situation 1s to claim that
the line segments in space have to overlap [6].

The assignment problem is a multi-dimensional de-
cision problem. A multidimensional optimisation can,
in general, not be achieved. That is why we trans-
form the problem into a onedimensional one. For this
purpose, we introduce a cost function that has to be
minimized.

The assignment problem is a problem of exponen-
tional complexity. It would be too time-consuming to
check the cost function for all possible sets of matches.
Therefore, we reduce the number of possible matches
considerably by heuristic means. The optimisation
procedure is performed afterwords.

2 Camera Calibration

Before the surveying drive is carried out, the camera
pair is calibrated in a three dimensional test field. The
test field consists of 92 circular targets that are captu-
red. The positions of the targets in the images are au-
tomatically determined using least squares matching.
Then the interior orientation and the exterior orienta-
tion in a local co-ordinate system can be derived. We
use the well known photogrammetic collinearity equa-
tions, where the exterlor orientation is described with
6 parameters: the position of the centre of projection
and 3 spatial angles. The interior orientation is mo-
deled using the principal distance ¢, the position of
the principal point (xg, yo), the lens distortion which
is modeled with a circular distortion A, A5, and a
linear-affine distortion Bi:

with

(1)

= Al(v*z — 7*%)7‘ + Ag(r4 — 7“3)7’,
(0 = 20)? + (y - o)™

By

dr(z,y)

2

r =
de =
Tests have shown that this model for the interior ori-
entation is appropriate for the used camera-lens sy-
stem.

3 Feature extraction

The feature extraction, the first step of the image eva-
luation, is performed using standard operators known
from image processing. Interest points are extrac-
ted using the FORSTNER interest operator [4]. These
points show a high significance and can be matched
with high accuracy.

Straight lines are found in two steps: first grey scale
edges are found by using a gradient operator [3] and
then straight lines which are longer than a threshold
length are extracted from the edge image.

Due to image noise and other influences, the end
points of the line segments are very unstable features.
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a

Figure 1: A scene is recorded in two stereo frames.
The displacement of the frames is between 3 and 10m.

Therefore we only deal with lines, which can be de-
scribed by

(2)

The first form is used if the angle € between the line
and the x-axis is between —45° and 459, otherwise the
second form is used.

For every extracted feature some atiributes are cal-
culated. The attributes of points are the position in
the image, a small square grey value matrix with the
point in the centre. The attributes of lines are again
the position, the line length and orientation, and the
mean grey values g; and gz on both sides of the line.

y=mz+b or z=my+¥V

Relations are calculated between pairs of features.
Two types of line relations are considered. Every line
pair has an enclosed angle in the domain 0°...180°.
Further on for each line pair the perpendicular dis-
tance of the second’s line midpoint from the first line
is calculated.

Points are related if their distance is below a thres-
hold distance. In that case their relative position is
determined. All features and relations are saved in a
database.

4 Finding Initial Line Matches

In order to restrict the total number of possible line
matches, we determine initial matches by heuristic
means. For this purpose geometric properties and the
extracted features are used. The procedure is descri-
bed for the case of 4 images, it can easily be generali-
zed for more than 4 images. The imagining situation
is shown in figure 1.

First all possible matches of lines in both images
(11) and (rl1) of time t; are regarded. We only admit a
match if the squared difference of grey values i1s below

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B2. Vienna 1996




a threshold I,:

(ggll) . girl))Q + (ggll) . ggrl))g < Tg~ (3)

From these two line segments a line in 3D—-space can
exactly be determined. The line segments of (r1) and
({1) are projected onto the line in space and furnish
line segments in space. A match is only assumed to
be true if the overlap in space is higher than a certain
threshold I',. Currently we claim a relative overlap in
space of 50% minimum.

In the next step possible matches in the consequent
image pairs are searched. If a line in the left image
(12) has a similar length and orientation as in the left
image (1), i.e. the absolute differences are less than
some thresholds I'; and Ty, this line is a possible can-
didate. Now we check whether the grey value diffe-
rence is the smallest one for all lines in image (/2).
If this condition is fulfilled as well we make a geome-
trical test: the projection of the reconstructed line in
3D-space into the image (I12) is compared with the
candidate line. Tor the orientation of image ({2} we
use the estimates from the wheel sensors. If their dif-
ferences again lie beneeth thresholds I'y, and I'y, we
finally accept the candidate line as a possible match.

The same procedure is performed with all lines of
the right image (2). An initial correspondence is only
kept if a corresponding line in (12) or (r2) is found.

This quite complicate procedure gives a number
of possible matches that are most probable linked
to really corresponding line segments. Typically the
matches are not unique: some lines are matched more
than once.

5 Camera Orientation

An orientation algorithm which estimates the orienta-
tion of the camera pair in ¢y is presented. The abso-
lute orientation is determined in the local coordinate
system. All measurements are performed in a local
coordinate system defined by the first image pair: the
camera (I1) lies in the co-ordinate origin. In a la-
ter processing the measurement results obtained in
this local coordinate system can be transformed into
a global co-ordinate system using GPS observations.
As already mentioned, the relative orientation of
the camera pair remains constant. The orientation of
both cameras is therefore completely described by the
known orientation of one (in our case the left) camera.
The orientation algorithm uses straight lines to de-
termine the exterior orientation. It is based on the
method presented in [7] and only uses the line para-
meters of the observed lines. At least three lines in
at least three images are needed to calculate the exte-
rior orientation. They must not be parallel in space.
The unknown parameters of the lines in space and
the unknown exterior orientation are determined in a
least square approach. The parameters of the image
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lines are compared with those calculated from the pro-
jection of the lines in space into the image with the
assumed orientation. The weighted square differences
of the line parameters in the images is minimized.

The orientation starts with the lines in the ima-
ges with the highest radiometric similarity. The
Schwermann-algorithm [7] is performed once. If there
are false matches, the algorithm will not converge to
the correct values. There are two possibilities to de-
tect this case. A low accuracy of the calculated lines
in space indicates false matchings. These are elimi-
nated and the process is repeated until the algorithm
converges to reasonable values. If orientation values
are near to the approximation determined from the
wheel sensors, this orientation is accepted.

6 Finding Optimal Line

Correspondences

6.1 Optimisation Algorithm

It is assumed that N possible assignments are given.
We denote the assignments with C;, i € (1...N).
Every assignment contains a list of matched elements
:z:gj), 7 is the image number (j = 1,..., M) and M is
the number of available images.

C = (:cz(.l), 1:52), ces :cg]‘l)),
"Null matches’” where no object in one image is mat-
ched are allowed as well. The task is now to find a
set of optimal assignments. We are looking for a set
Q2 being a subset of (1,2,...,N), the set of all pos-
sible assignments. The number of assignments in
is denoted with |©2]. Q has to fulfill a compatibility
restriction. The compatibility or uniqueness restric-
tion requires that every object must only be matched
once:

2 220 yie 1, M), and i ke Qi #k

Further on we claim that the selected assignment
set is 'better’ than every other assignment set. For
this purpose we construct a cost function K () that
describes the quality of an assignment set. The cost
function K () has to be minimized. A possible cost
function is presented in the next paragraph. We as-
sume here that the cost function depends on two fac-
tors: attribute costs K4 and relational costs Kg.
Then we get the following cost function:

K@) =Y KiC)+>, > Kr(C,0C).

€0 EQJEN >

(4)

For ervery |[Q2] there exists an optimal solution Q. To
find the optimal soultion we use a branch-and-bound
algorithm.
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fori=1,...,N: Optimal (¥) = oo

fori=1,...,N
for all €; in the list

if Q; and C; are incompatible
continue

Ky = Zkeﬂj Kr(Cr,Ci) + Ka(C)

Ko = Ky + I{(Qj)

if K5 > p - Optimal(|Q;]|+ 1)
continue

if Optimal(|Q;|+ 1) > Ky
Optimal(|2;]|+ 1) = K,

create new list element Q; = Q; + C;

K(Qp) = Ko, insert ; into list

Figure 2: Branch-and-bound algorithm for the deter-
mination of optimal assignment sets.

The algorithm is described in detail, a pseudo code
version is shown in figure 2. An array called Op-
timal’ always contains the minimal costs for a given
number of chosen assignments. A chained list contains
all possible assignments regarded. The list is ordered
from small to high costs, at the beginning the list ist
empty. In the outer loop all assignments C; are regar-
ded. We try to add them to every assignment set €2;
yet in the list. If they are not compatible the proce-
dure is continued with the next ;. We do the same if
the new generated ; = Qy + C; produces costs much
higher than the optimal costs for that number of as-
signments. The generated new list element is inserted
into the ordered list.

When all assignments C; are treated, we can search
the optimal assignment sets in the list. As the list
is ordered by the costs, we go through the list and
search for the first occurence of assignment sets €
with [Q;| =k, k=1,...,N.

The presented algorithm examines only the best
and only compatible assignment sets. A new assign-
ment set is created if 1t is compatible and not too far
from the best assignment set known at that time. The
parameter p determines which solutions are conside-
red. For p = 1 only solutions better than the actually
best solution are accepted. For p = oo all solutions
are accapted. Currently we use the parameter value
p = 3 which has proved to be appropriate.

The algorithm furnishes a list of optimal assignment
sets. For every number of matches we get the optimal
assignment set. The last element is the combination
with the maximal number of compatible matches pos-
sible.

6.2 Spezification of attribute and rela-
tional costs

The attributes and relations contain information that
should be used for the matching. It is assumed that
all attributes contain the same amount of informa-
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image 1 image 2
Figure 3: 3 images: 3 matches are found, but one
match (3°,3”) is only found in two images

tion. Let’s assume to have an attribute in two images
a™ and a(®. The attributes a are equally distributed
over a certain domain. We assume that the attribute
difference a() — a(®)| however, is normally distribu-
ted with a certain variance o2 and zero mean if two
features correspond.

A possible cost function K 4(C;) is the squared sum
of attribute differences. When there is more than one
attribute the squared differences have to be weighted.
Deviding the squared differences by the variances re-
sults in a sum of normally distributed random varia-
bles with unary variance — provided that the match is
correct. We denote the ¢th attribute in the nth image
aE’n) and the mean attribute a@;. Thus for n attributes
in M images we get:

1 M
a; = —M-mzzlaz(-m) i=1,...n (b
n_ (m) _ =2
. a; ’ —a
Ka€) = Z( - ) (6)
i=1l m=1 t

Here o7 is the variance of the ith attribute difference.
As K4(C) is a sum of squared normal distributed ran-
dom variables, it is y?(nM)-distributed. Its mean va-
lues E(K4(C)) is nM.

Often there is the case that one match does not
exist in all images (see figure 3). In (6) we sum only
over the images where the regarded feature exists and
add n to compensate for this. The consequence of this
approach is that we do not punish nor honour missing
correspondences in one image.

To determine the relational costs K r(C;, C;) we pro-
ceed in a similar way. Again we assume that the dif-
ferences of relation values are normally distributed.

The formula for Kr(C;,C;) 1s shown for only one
relation, the case of more relations is straight forward.
We denote rgn) the relational value between feature 7
and feature j in the mth image. Again we calculate
the mean value 7;; and from this Kr(C;, C;):

i=1,...n (7)

Lo~ o)

7:,']' J—V[—ZT‘WM
m=1

Y =)
O

m=1 ij

Kr(Ci,Cj) (8)
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6.3 Matching lines and points

The forementioned selection algorithm can easily be
generalised for the case of line and point matching.
We have to define new cost functions for the point at-
tributes, the relations point—point and point-line. We
present the case of two images to be matched, the ge-
neralisation for more than one image pair is possible.

For the attribute costs we propose to use the com-
planarity constraint and the correlation coefficient
between points. In the ideal case the correlation co-
efficient p;; between two points P; and Pj equals 1.0.
The spat product p;; of the base vector and the two
direction vectors from the centres of projection to the
points equals 0. Thus we define

pij = 1° Pl
Ka(ps, Py = Wil — 1 . ) + (9)
2 P

For the costs of point—point relations we regard the
distances (d;z:(”, dy(l)) between the points in the first
image and the distances (dz(®), dy(?)) of the corre-
sponding points in the other images. Then we get the
relational costs for the point pair Pl(l)) Pz(l) matched

to Pl(2>, PQ(B() respectively:

; LeD) — deN2 (dy() — dy()?
K/H(): (.(l 5 x ) + ( y zdy )
T i Udy

(10)

For the relation point-line again we regard the di-
stance of the point from a line. One can differentiate
between the 'right’ and the ’left’ side of the line by
using a signed distance.

7 Experimental Results

Practical tests with an image sequence taken on a Ger-
man highway have been perfomed. Figure 4 shows
four images with extracted straight lines. The line
detector furnishes 32, 32, 31 and 37 lines respectively.
The initial line matching furnishes 20 possible assig-
nments. The orientation of the second image pair is
performed using 5 assignments. The final optimisa-
tion furnishes assignment sets with up to 8 assign-
ments. There is only one false match in the right
part of the images: a neighbouring line is assigned.
These lines are even [or the human operator difficult
to match as they are quite similar.

8 Performace Analysis

We have performed the tests on a DEC Alpha
3000/600 (175 MHz). The process time for the exam-
ple described in the previous section is listed in table
1. The greatest part of the calculation time is con-
sumed in the standard image processing part. This
calculation could be performed with a special image
processing hardware which is up to 100 times faster
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Table 1: Calculation time for the whole feature ex-
traction and matching process with the four example
images from section 7

Procedure process time (s)
Interest point calculation 148
Lines calculation 116
Initial matches 4
Camera orientation 8
Optimal matching 4

than a workstation. Thus, the construction of a sy-
stem working under operational conditions is possible.

9 Discussion

An algorithm for line matching based on the minimi-
sation of a cost function was presented. The mini-
mus is found by first applying heuristic means and
a branch-and-bound optimisation afterwards. Cur-
rently only a small part of the possible line matches
(r 20%) are found. We hope to enhance the num-
ber of matches found in an aditional stage where the
matches from the first stage are assumed to be correct
ones. The matched lines are then of course discarded
from the list of possible assignments.

References

[1] Aussems, Thomas, 1995. Fahrzeugortung mit-
tels GPS und Koppelnavigation. In: Benning
(Ed.), 125 Jahre Geodésie an der RWTH Aachen,
Veroffentlichung des Geodatischen Instituts Nr.
53, pp.71-80.

Christmas, W., Kittler, J., Petrou, M., 1995.
Structural Matching in Computer Vision Using
Probabilistic Relaxation, IEEE-PAMI, Vol. 17,
No.8, pp. 749-764.

Deriche, R, 1985. Optical Edge Detection Using
Recursive Filtering. In: First International Con-
ference on Computer Vision.

Forstner, W, 1991. Statistische Verfahren fir
die automatische Bildanalyse und ihre Bewer-
tung bei der Objekterkennung und -vermessung.
DGK, Reihe C.

Melsa, J., Cohn, D., 1978. Decision and estima-
tion theory, McGraw-Hill, New York.

Taylor, C., Kriegman, D., 1995. Structure and
Motion from Line Segments in Multiple Images,
IEEE-PAMI, Vol. 17, No.11, pp. 1021-1032.

Schwermann, R., 1994. Automatic image orienta-
tion and object reconstruction using straight lines

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B2. Vienna 1996




/ \ / ‘”‘%—-.X%

Figure 4: Result of a practical test: the left column shows the left images, the right column shows the right
images. The matched lines are shown in the two bottom rows.

in close range photogrammetry. In: Close range [8] Vosselma,n,‘Gv, 1992. Relat.ional MA'tching.,Lec—
techniques and Machine Vision, ISPRS Commis- ture Notes in Computer Science. Springer Verlag
sion V, pp. 349-356. Berlin-Heidelberg-New York.

31

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B2. Vienna 1996




