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ABSTRACT:

Two techniques of array algebra are introduced. The first technique, Entity Least Squares Matching (ELSM), automates
tie point mensuration by using fast array algebra polynomials for real-time registration of overlapping Digital Elevation
Models (DEMs). The dense raw DEMs (produced by interferometric SAR, automated stereo image matching, medical
imaging etc.) may contain several blunders and missing data. ELSM is designed as a real-time measuring and adjustment
system: 1) The LSM tie point matching of small windows gets speeds of over 10,000 automated transfers/sec among 4
overlapping DEMs. It is robust against blunders because the parameters of its entity model are point invariant, 2) The
global entity model is given the structure of Kronecker or R-products for their “fast” solution and evaluation by amay
algebra, 3) Every post can be considered as a tie point in a new vertical model, strip or block adjustiment of array algebra
with an automated blunder elimination, and 4) The technique can be expanded into data fusion and compression of 3-D
and 4-D arrays in medical and video images. The second technique of Global Least Squares Rectification (GLSR) is
introduced for rigorous merging and regridding in output space. It uses the refined ELSM or other orientation data,
forming the geometric data base for automated site modeling and scene simulation. A similar process is applicable for
multi-image ortho rectification or least squares object reconstruction. The merged DEM has a better quality and resolution
than the raw input DEM arrays oriented by ELSM. The fast GLSR solution of array algebra eliminates most blunders of
the raw input data. An experimental prototype achieved speeds of over 100,000 merged DEM posts/second.

A controlled experiment in a GLSM study of automated
1. INTRODUCTION low density (macro) DEM extraction with four experienced
cartographers illustrated this problem of canopy layers,
Current automated photogrammetric and SAR mapping  (Hermanson etal, 1993). The human eye-brain stereo
techniques can produce high resolution DEM arrays at  mensuration process failed to estimate a unique elevation
high through-put rates. But this is true only for the raw  value for the terrain surface at over 5% of the posts. The
(unedited) data, often requiring some refined orientation  techniques of ELSM and GLSR reduce the problem into
and “feathering” to merge overlapping DEMs into  an automated weeding of outliers and undesired layers on
seamless mosaicks of a reference datum. The reported  the more uniquely defined (but more spurious) surface of
automated rates of Global Least Squares Maiching the visible parts of terrain and its occluding top portion of
(GLSM) with optical and SAR stereo images are getting  the canopy layer. The automated edit and merge constraint
over 10,000 match points/sec in modem computers, of multiple overlapping DEM arrays consists of the fact
(Rauhala, 1992), (Hermanson et.al., 1993). Similar raw that the same (interpolated) elevation should be achieved
DEM collection rates are available from interferometric  within the limits of random errors after the elimination of
SAR (IFSAR) sensors. a systematic orientation or deformation error. A
significant residual error is caused by a) an outlier, b) a
The botleneck of the overall DEM production is its  valid change of the terrain and its top canopy, or ¢) an
validation and manual edit. This is especially true for the ~ ambiguous elevation at the horizontal post location. Use
new flood of high density micro DEM or automated  of three or more overlapping DEM arrays can also
feature mensuration of the often poorly visible or defined eliminate the blunder if the other data sets agree within the
layers of the terrain surface and its canopy. The visible ~ limits of random errors.
parts of these layers are captured by the typical 2x2 pixel
point density of GLSM. The problem is worse with The automated edit and merge problem is made more
IFSAR DEMs capturing some canopy while penetrating challenging by requiring simultaneous refinement for the
the other. As the elevation variations of this micro orientation parameters and a removal of the systematic
[op()graphy start approaching the measuring error, some deformations of the data. The merged output DEM is
new automated techniques are required to classify the  required to be a seamless mosaick over a large area of
measurements according to these surface layers. The amay ~ interest. The process is split into two phases. The
algebra based “fast” technologies offer new enabling mensuration of “tie points” by an automated matching of
capabilities for this task. the local terrain shape from all overlapping DEMs is made
using the LSM technique and its entity adjustment or
global edit model. Therefore, the technique is called
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ELSM. The adjusted orientation and deformation
parameters of the ELSM solution act as “fast address
generators” in mapping the input DEMs into the common
output space. GLSR treats the transformed elevations at
the arbitrary horizontal locations of the unknown merged
DEM grid as the observables of a simultaneous but fast
least squares adjustment of finite elements, (Rauhala,
1986), (Raubala et. al, 1989). The continuity or
regularization constraints contribute to an automated fill-
in, smoothing and editing of raw DEM data.
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Figurel showing the flow chart of the ELSM and GLSR

2. DESIGN OF ELSM

This  section discusses DEM tie point mensuration
technique of ELSM and the associated real-time
orientation. The orientation solution is updated after each
iteration of the LSM tie point measurements in all
overlapping DEMs, thereby feeding the initial values of
the next iteration as shown in the flow chart of Figure 1.
All points of a given DEM share a set of ‘“entity
orientation” parameters mapping the input DEM arrays
into a common reference datum. This is different from the
traditional image-to-image registration model or a regular
tie point mensuration where each match location also
depends on its point variant object space coordinates. For
instance, GLSM has typically 512x512 or over 250,000
point variant shift and illumination bias parameters (total
of over 750,000) to cover a 1kx1k reference image area at
2x2 pixel node spacing. ELSM employs only few
orientation (and shear error) parameters in object space.
This is achieved as a modification of the fast image space
bundle adjustment and automated feature recognition,
called FELSM, where the linear features act as the tie and
control entities, (Rauhala and Mueller, 1995):
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* Least Squares Matching (LSM) produces estimates (and
their 3x3 weight matrix) for three small parameter
corrections dh,dx,dy at the "tie point" locations of a
regular sampling grid on the overlap area. At each sample
location, a window of 3x3-7x7 slave array values are
matched with the DEM reference window to derive the
“observed” LSM values of dh, dy and dx.

* The spacing of the LSM tie point grid is typically
sparser than the used window size. Thus, not all DEM
values are used in the least squares estimation of the
corrections to the orientation polynomials. The LSM
starts by evaluating the predicted values dx°, dy° of the
horizontal shifts of the orientation polynomials. The
predicted or reshaped elevation values g(x+dx©,y+dy°) of
the slave window are interpolated in the slave DEM and
corrected by the vertical oriéntation polynomial dh(x,y).
The differences of predicted “slave” DEM values, g, from
reference values f(x,y) are used in LSM to get small local
corrections dh,dx,dy and their 3x3 weight matrix (normal
matrix scaled by the locally minimized square sum of
residuals of L.SM).

e The local normals of LSM can be considered as a
(weighted) observation equation in the adjustment of small
corrections for the global orientation model used in
predicting the values of 'g. These two adjustment processes
can be combined to express the observed differences g-f
directly with the unknown orientation polynomials,
resulting in the nonlinear ELSM observation equations

dM&w+gh+dﬂ&w,y+dﬂmw]=K&W+vawhn

Each 2-D global shift function dx,dy and the linear vertical
bias dh is given an array polynomial of n1,n2 terms. The
polynomial parameters have the separable array structure
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Variables x,y are the horizontal geographic coordinates of
the output space (merged DEM).

» There are some practical benefits of choosing three
separable sets of 2-D polynomial coefficients A in (2) as
the global modeling parameters of ELSM. One is their
convenient and compact arrangement into a 3-D n,,n,,3
aray for a given DEM. The orientation parameters of p
overlapping DEMs form the 4-D array A of dimensions
nl,n2,3,p. This arraying of parameters is not only
convenient but results in computational savings in their
least squares fitting to gridded observed values. Another
practical benefit of the separable model is that the
evaluation of these "address generator" polynomials at a
grid of x,y variables is "fast”. The recursive evaluation of
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one 2-D polynomial takes n1-1 or n2-1 (depending on the
order of summations in (2)) additions per point vs n1*n2
multiplications and additions per point if evaluated at
random locations. These savings are realized in the
reshaping process of the LSM tie point grid, enabling the
speed of over 10,000 tie points/sec. ELSM and GLSR
exploit these “fast” properties as discussed next.

» The fast solution of the 4-D parameter array A enables
the real-time ELSM triangulation of the orientation
parameters using the gridded LSM "tie point values" of
local dh,dx,dy estimates and their full 3x3 weight matrix.
A brute-force solution of the orientation parameters and
the m merged elevation parameters is prohibitive as its
operation count of each iteration would be about op=

(Bpniny + m)3. In the example of p= 4 DEM models,

ni=n2=4 and m=1,000, op = 1,1923. ELSM exploits the
fast solution techniques of the 4-D array parameters A,
allowing m to become so large that the valid tie points
overpower the effect of outliers in the estimation of the
orientation parameters. This is achieved by an amay
reformulation of the adjustment of independent models.

e Merged DEM values are considered as the vertical
coordinate parameters of an independent model adjustment.
The observables g are processed in the post wise order of p
values at a given post. This allows the elimination of the
unknown (merged) elevation parameter resulting in the
reduced normals of the orientation polynomials. After all
posts are processed, the solution of the orientation
normals has the count of p(3nlnj,3)3 =4 (3x4x4)3 in each
iteration of array relaxation. This idea makes the amay
algebra applicable for practical problems that otherwise
would prevent the use of the “fast” solutions, (Rauhala,
1986). ELSM exploits the array relaxation such that the
effect of the covariance terms among the p sets of
orientation parameters is moved to the right hand side of
the normals. A fast convergence is achieved when the
number of tie points is increased such that the effect of
outliers is overpowered by the “good” DEM values.

e Back substitution of orientation parameters for the
“merge” or the solution of the vertical coordinate
parameters has two “fast” solutions. As in the traditional
model adjustment, the coordinate parameters are merely
weighted averages of the transformed coordinates of each
model. By coinciding the tie point density with the 3x3-
“Tx7 post window size of LSM, the merge takes place as a
by-product of updating the reference window value in the
final ELSM iteration of the orientation polynomials. The
second, more general, solution with the finite element
constraints is achieved by GLSR.

e The solution of the array parameters A can be further
speeded up by sacrificing some rigor in the stochastic
(statistical) error model. This sacrifice is minor in
comparison to reducing the functional math model of
dh,dx,dy to three averaged shifts or to the 7-parameter
transformation of absolute orientation, (Rosenholm and
Torlegard, 1988). The very fast solution consists of
preserving the rigor of the stochastic model in the partial
solution along the x-direction. The full (point variant) 3x3
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LSM weight matrix of the local tie point observations
makes the three polynomials correlated. This weight
matrix is applied in the 1-D partial solutions of each line,
each requiring the matrix inversion of order 3n] or about

27 n13 operations. This is followed by the "comner

turning” (partial solution over the second index of the 4-D
amray) or unweighted polynomial regression along the y-
direction, involving only one matrix inversion of the order
n2. This very fast solution was discarded after some

practical experiments. Its quality and robustness could not
compete with the adopted rigorous baseline.

By reducing the values of ni,np in (2) into 1-2, the
traditional orientation models are recovered as special cases
of the adopted baseline. Higher degree polynomials also
compensate for the systematic deformations or shear
errors. Similar polynomials are used in the generic math
models of softcopy workstations to approximate the
rigorous nonlinear models of image geometries. These
systems can handle the real-time transforms from the
input-to-output space based on the raw support data. Thus,
their small corrections dA can be considered as the main
parameters of the ELSM triangulation. The refined
support data are found by adding the estimates of the
ELSM polynomials dA to the polynomials of the raw
support data. The input of GLSR can then be taken from
the original input space (whose output served as the input
of ELSM). This requires that ELSM should be able to
handle up to the bi-cubic polynomials of ni=n7=4 of the
typical softcopy systems employing fast image rectifiers.

3. TEST RESULTS OF ELSM

Two test areas were processed. Each area had three input
DEMs produced by the automated DEM technique of
Global Least Squares Matching (GLSM) from three SAR
stereo pairs. A manually measured ground truth DEM of 5
m spacing was used as the reference in 4-5 pull-in
iterations. The averaged posts of the LSM sample
windows were used as the reference in the last two
iterations. In practice, the ground truth DEM is replaced
by some information for the absolute orientation of the
relative ELSM solution where any input DEM can serve
as a temporary reference.

The ELSM algorithm outputs the statistics of each
iteration, including the weighted unit error of each
iteration and the solution of parameter corrections.
Residual statistics are summarized after the final iteration
for each input DEM. letting the operator to “see” the
locations of outliers or disagreements among all data sets.
The analysis of the tests confirmed the high parallax
mensuration accuracy of 0.2-0.4 pixel of a similar
experimental EO test of the GLSM technology,
(Hermanson et.al, 1993). This resulted in the ELSM
sigma r.m.s. difference of 1-2 m for the individual SAR
DEMs of a good 2-ray stereo geometry.

Both test areas had such a poor imaging geometry
(equivalent to-a poor base-to-height ratio in EO stereo) for
two of the input DEMs that their contributions in the
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merged solution of the object space were negligible. Their
outliers were clearly visible in the residual analysis. The
merged solution can be converted into “raw. edited” shift
values of new GLSM processes to produce the “refined
edited” merge. The resulting solution can then feed the
reference-to-reference image registrations, thereby coupling
all 2p images with the tie points of about 2x2 pixel
spacing. The resulting dense tie, feature and DEM point
mensuration of automated edit enables the system concept
of multi-ray image mapping, (Rauhala, 1986, 1989).

A practical ELSM operations strategy was developed
through thousands of tests with various factors affecting
the quality and speed of convergence of the ELSM
orientation solution. The solution speed in fitting the 4-D
parameter array to the LSM estimates of local dh,dx,dy
values was s0 high that it could match the LSM speed of
10,000 tie points/sec in a SUN Sparc 5 computer. Thus,
all input DEM posts could be afforded in the orientation
solution, making it as robust as possible against the
outliers. The solution typically converged in 3-7 iterations
and 2-6 seconds of user time. Three slave DEMs and a
Ground Truth reference DEM of about 200x200 posts
were oriented and merged in both test areas.

The ELSM algorithm was. debugged using a simulated
reference 256x256 DEM of 2-D sine curve. An initial
sequential (vs. simultaneous merge) baseline of GLSR
was used to create the regridded slave DEMs of known bi-
linear address polynomials from the simulated reference
DEM. They were recovered (within the computer round-off
error) by ELSM in 3-4 iterations. Shifts or translations up
to 10 posts and shift variations of 5-10 posts due to the
higher order terms were recoved without resorting to the
pyramidal pull-in process. The convergence and range of
puli-in were improved by allowing the high order terms to
adjust beyond n1=n2=2. The bi-quadratic case of n]=np=3
was an optimal model of the real test data with large blobs
of locally diverged spots at the deep SAR shadows. Since
the LSM weight matrix is divided by the large residual
error of such blobs, their effect on the global solution was
found negligible.

Practical insights were gained in using the minimum
residual estimation theory of nonlinear array algebra
beyond least squares. Also explored was the use of the
nonlinear perturbation theory (use of multiple initial
values for each parameter) by including the high order
partials in the linearized normals of LSM, (Rauhala,
1992). An improved convergence was noticed with the
simulated error free data. The outliers of the real data made
some LSM sample normals (weight matrix) negative
definite opening new possibilities for automated edit of
the nonlinear ELSM, FELSM and GLSM technologies.

The discussed initial test provided insights on the DEM
shape matching and merge problem, showing the
robustness of ELSM even with the very poor test cases.
The dissimilar merge of IFSAR data and GLSM DEMs
produced from the stereo SAR and/or EO is getting
feasible. The goal of such tests is to reduce or automate
the cumbersome manual DEM validation and fill-in. The
stereo SAR and IFSAR DEM techniques often lack the

324

capability of manual mensuration and fill-in, making the
full automation a high priority in the future production of
high density DEMs or Digital Elevation Canopy Model
(DECM). The envisioned merge of dissimilar stereo
models allows the manual edit performed in the existing
EO workstations. The dissimilar merge can be expanded to
3-D and 4-D medical images or to a compression of digital
video and other image sequences.

Some interesting questions and problems for further
testing and development of ELSM are: How many models
are typically needed before the plateau of diminishing
returns is reached? The answer can be found in practical
tests using IFSAR DEMs and by developing the chaining
processes of GLSM, FELSM, ELSM and GLSR with the
expanded ELSM strip and block triangulation of entire
DEM sequences of a systematic overlap pattern. The
ELSM strip adjustment (with a 5-D array of orientation
parameters and a 3-D array of the merged elevation
parameters) is also applicable for the “fast” image space
bundle adjustment of image sequences in the fashion of
differential photogrammetry, (Kubik, 1992). These new
technologies open a new era of multi-ray softcopy
workstations replacing the traditional feature and sparse
DEM data base collection with the system concept of
automated and user friendly image mapping. Their control
networks can be established in an integration of some
photogeodetic GPS ideas of (Brown, 1994) into the data
base of control features and site models of FELSM,
(Holm et.al., 1995), (Rauhala and Mueller, 1995). In the
transition period, the DECM of GLSM can support the
more traditional feature extraction by FELSM.

4. DESIGN AND RESULTS OF GLSR

The estimation of the orientation and elevation parameters
of the merged grid is split into two phases. ELSM of the
first phase couples the tie point mensuration into a real-
time adjustment of the orientation (and deformation)
parameters. The second phase of GLSR considers these
parameters known by mapping the input DEMs into the
output space. The resulting horizontal locations form
irregular grids which have to be merged into a single
unknown regular grid by GLSR. The unknown elevation
values at the merged grid are estimated in GLSR while
automating the edit of the input data. An automated
blunder elimination is feasible at post locations having
two or more observations in their close neighborhood.
The results of the GLSR prototype prove that GLSR is
practically feasible. The speed of 100,000 posts in a
second was reached in the initial sequential algorithm
where each input DEM was transformed and regridded to
support the debugging and testing of the ELSM program.

GLSR is an evolutionary “fast transform” product of amray
algebra. Some starting ideas of array algebra are today
getting the attention of applied mathematics and
engineering, (Fausett and Fulton, 1994), (Van Loan and
Pitsianais, 1992), (Rauhala, 1974, 1976, 1980, 1986,
1992, 1995). Amay algebra is an expansion of the
Kronecker or tensor products to more general R-products
and estimation theory of general “fast” matrix and tensor
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operators. It provides tremendous savings for a solution of
large systems of linear and nonlinear equations.

GLSR applies array algebra to the least squares solution
of the Finite Element DEM and array rectification:

¢ The unknown elevations of a regular (merged) output
grid are arranged into a 2-D parameter array

* Two types of linear observation equations, sample and
continuity equations, are applied for a simultaneous
(indirect) solution of the parameter array. The sample
equations consist of

+ 3-D coordinate transformation of the input DEM to
the output system using the fast grid evaluation rules of
the separable polynomials (2)

+ use of the bi-linear interpolation coefficients in the
observation equations to express the transformed elevation
as a linear function of 2x2 closest unknown post values

¢ The continuity or regularization equations consist of
expressing the second derivatives of the unknown grid as
linear functions of the 3x3 neighboring posts. Their
normal equations couple each post into the 5x5 closest
posts. They, in turn, are coupled to their 5x5 neighbours
such .that a simultaneous network solution is required.
Unique estimates are found for any output post by an
automated fill-in due to the interpolation and smoothing
effect of the continuity constraints.

» Many problems of engineering and applied math only
have the boundary values known with infinite weights. In
GLSR, the properly weighted observed values are scatiered
more or less uniformly over the entire grid such that about
p input values exist for each output node. This abundance
of the “boundary values” and two or more weighted
continuity constraints per node make the system very
robust, enabling the automated blunder elimination. The
merged DEM can be made denser than the input DEMs to
reflect its improved resolution and accuracy.

e After the accumulation of all sample and continuity
equations, their combined normals are solved by the fast
array algebra techniques. The traditional sparse solution is
often over 1,000 times slower, making this rigorous
multi-image formulation of indirect ortho-rectification
practically feasible. The solution simplifies the high speed
memory management while exploiting the parallel disk
technology for fast processing of very large arrays.

An early prototype of GLSR was modified for a sequential
“slave DEM generator” in ELSM simulations of error free
data. In the first stage of its slave DEM regridding from a
(simulated 256x256) reference DEM, one input (reference)
line is visited and the three known polynomials dh,dx,dy
are evaluated at each input post. Two sample equations are
formed using the output x-location as the variable for the
transformed elevation and y-coordinate. After one input
line is processed, the 1-D continuity equations are added
on the 1-D normals of finite elements. Their fast solution
for the elevation and y-coordinates at the regular output x
locations is stored until all lines are processed. A similar

325

1-D process is repeated along the y-direction by
considering the intermediate elevation solution as the new
observed values. The result is a regular elevation grid in
the output space. This prototype can be reversed for the
simultaneous merge of all (p) slave DEMs. The multi-
image ortho rectification is achieved by replacing the
ELSM address polynomials with the point variant image-
to-image registration solution of multi-image GLSM.

The initial merge results of the ELSM technique (using
weighted averaging vs. the rigorous GLSR) indicate that
more than 3 DEMs are needed for a robust blunder
detection and automated DEM validation. With the
exception of one good stereo model, the models contained
large spots of invalid data due to the artifacts of SAR
shadows and other problems. The operational single model
GLSR for the error free ELSM simulation data had the
speed of over 100,000 posts/second in a SUN Sparc5
computer. The high speeds of ELSM, FELSM and GLSR
enable new technologies for machine vision and image
understanding by exploiting the geometric power of their
photogrammetric math models. The array algebra provides
the foundation to formulate the problems in terms of the
rigorous nonlinear or linear estimation theories and the
“fast” numerical analysis.

5. SUMMARY

Two evolutionary applications of array algebra were
introduced. Entity Least Squares Matching (ELSM)
employed the basic ideas of the LSM theory from the mid
1970’s to the problem of automated tie point mensuration
or shape matching among overlapping DEMs. The output
of LSM feeds the global or entity math model which is
more robust than those used in the GL.SM image-to-image
registration or in the image space bundle adjustment of
FELSM using linear features. The entity model of the
object space merge and mosaicking is point invariant after
a fast elimination of the coordinate parameters of the
independent model adjustment. The reduced normals of
orientation parameters are formed and solved so fast by
array algebra that their updated values feed, in turn, the
next iteration of the real-time nonlinear LSM tie point
mensuration. This makes the LSM corrections of dh,dx,dy
from the predicted locations robust against outliers. The
LSM reshaping botteneck is removed by the fast
evaluation rules of the orientation polynomials of
Kronecker products, resulting in the speed of over 10,000
point transfers/sec among three slave DEMs. and one
reference DEM in a SUN Sparc5 computer.

Global Least Squares Rectification (GLSR) performs the
back-substitution of the orientation parameters for each
input DEM. The transformed coordinates in the object
space are treated as the observed values of the finite
element DEM technique. They are complemented by the
weighted continuity constraints coupling 5x5 neighboring
nodes in the combined normals. A fast solution of the
normals is made feasible by array algebra for virtually
unlimited array sizes, as reported in the photogrammetric
community since the early 1970’s. The applied math and
other engineering fields empoying the least squares finite
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elements are awakening today to exploit array algebra. The
reported speed of GLSR was over 100,000 posts/second.
By slight modifications, GLSR gets applicable for ortho
rectification or object reconstruction from multiple images
registered by GLSM at the typical resolution of 2x2 pixel
node spacing. The resulting high resolution DEM of
automated edit captures the visible portions of the terrain
and its occluding canopy features in the fashion of the
emerging SAR DEMs.

One of the first practical goals of EL.SM and GLSR is the
automation of the validation and edit of the high density
DEMs and feature data bases of the new image mapping
systems enabled by GLSM and IFSAR technologies. The
tests showed the feasibility for merging data of varying
quality while assessing their consistency in real-time with
the full 3x3 LSM weight matrix in the global adjustment.
The main reason for the outliers is that different parts of
the terrain and its canopy layers are visible from different
sensor views. The percentage of the screened data, not
passing the automated edit, is in the order of 1-5% of the
raw data. The interactive edit can also be speeded up by the
fact that the outliers are clustered on local features such
that the new techniques of FELSM, ELSM, GLSR and
GLSM get applicable also in the local repair work.

ELSM can be expanded to 3-D and 4-D arrays and for
dissimilar sensor fusion with applications limited only by
the imagination of the users. An expansion of the single
model EL.SM mode into entire strips or blocks of DEM
and image sequences is feasible in the theory of amay
algebra. The orientation parameters form 5-D or 6-D
arrays and the coordinae parameteres are arranged into 3-D
or 4-D arrays. Some of the parameters can be ‘eliminated
by the principle of differential photogrammetry and back-
substituted to the “absolute” bundle adjustment for image
or point variant self-calibration. The resulting quality of
the 2x2 pixel dense feature geometry is approaching that
of the photogeodetic control points.

The reported ELSM simulations pionecred some practical
uses of the nonlinear estimation theory of minimum
residuals and perturbation, published at the 1992 ISPRS.
The new general theory of nonlinear estimation recovers
the known solution algorithms as special cases. It uses
the high order partials of Taylor series in the lincarized
solution of the normals minimizing any arbitrary power
(vs. the power=2 of least squares) of the residual object
function. The perturbation theory applies an entire grid of
initial values - of the nonlinear parameters for a
simultaneous solution. The range and rate of the
convergence is improved by using the 3-D, 4-D etc. arrays
of high order partials and the estimate of the uncertainty
grid of the initial values. The direct (one iteration)
solution of large systems of nonlinear equations is getting
practically feasible but lots of experimentation is needed
to gain insights on these advanced concepts. The reported
technology driven work took the first steps on this fertile
new boundary of modern math and engineering sciences.
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