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ABSTRACT

Due to large datavolumes when remote sensing or other kind of images are used, there is need for methods to
decrease the volume of data. Methods for decreasing the feature dimension, in other words number of channels, are
called feature selection and feature extraction. In the feature selection, important channels are selected using some
search technique and these channels are used for current problem. In the feature extraction, original channels are
transformed to lower dimensional channels and these are used for problem. Widely used feature extraction method
is Karhunen-Lowe transformation. In this study Karhunen-Lowe transformation is compared to transformation made
by Kohonen self-organizing feature map. Tests made using artificially generated datasets show that the differences

between compared methods are small.

1. INTRODUCTION

Usually remote sensing instruments carry out
measurements wusing several areas of the
electromagnetic spectrum. As a result, image provided
by a remote sensing instrument consist of several
spectral channels. The number of the channels can be
seven like in LANDSAT TM-image, but it can go as high
as several hundred when spectrometers (e.g. AVIRIS,
224 channels) are used. Important step in data
processing before e.g. land use classification is to find
relevant channels for the current problem, so that
feature dimension would decrease.

We can choose relevant channels using knowledge about
spectral properties of the targets represented in the
image. For example, if we want to separate land areas
from water areas we can use LANDSAT TM channel 4,
because the reflectance of water is nearly zero on the
near-infrared part of the spectrum. But usually in the
more complicated problems we do not have this kind of
a priori information, or it is quite time consuming to
utilize a priori information to channel selection. In this
case, we can perform mathematical feature selection.

The structure of this paper is as follows: chapter 2
represents different approaches for the feature selection
and chapter 3 one of these methods, Karhunen-Lowe
transformation, called also principal component analysis,
is reviewed. In chapter 4 self-organizing neural network
called Kohonen self-organizing feature map (SOM) is
presented and its use in the feature selection is
discussed. Chapter 5 presents experiments made for
comparing Karhunen-Léwe transformation and SOM
and chapter 6 discusses about results. Finally, chapter
7 represents conclusions.
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2. FEATURE SELECTION

The methods for feature selection are divided into two
groups: feature selection in feature space and feature
selection in. transformed space. Feature selection in
feature space is made by choosing those features, which
contain useful information and deleting those features
which contain redundant or unnecessary information. In
other words, we have all features in featureset Y and we
seek the best subset of Y called X. The best subset of ¥
is chosen by maximizing some criterion function. In the
ideal case this best subset maximizes the probability of
correct classification compared to other possible
combinations. Usually feature selection in the feature
space is simply called feature selection. Feature selection
in the transformed space is made by transforming the
original measurement vector y to lower dimensional
feature vector x. In this case the decrease of redundant
and unnecessary information depends on wused
transformation. Transformation can be any kind of
vector function of y, but usually linear transformations
are used. Linear transformation can be written as

x = Ay, ®

where A is transformation matrix. The problem is how
to determine a good matrix A, so that useful information
is not destroyed. Feature selection in transformed space
is also called feature extraction.

The best subset of all features in the feature selection is
chosen. using criterion function and search algorithm.
Criterion function J to be maximized can based on
probability of error, interclass distance, probabilistic
distance, probabilistic dependence or entropy. The idea
in all these criterion functions is to measure the
separability of classes. The best subset could be found by
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evaluating the value of criterion function for all possible
combinations, but this is usually too time consuming.
For example, if the dimension of original feature space
is 20 and the dimension of transformed feature space is
10, 184756 different cases should be evaluated. The only
optimal search algorithm, which implicitly evaluates all
possible subsets is called branch and bound-algorithm.
Other, nonoptimal algorithms are for example sequential
forward selection and sequential backward selection.

The problem in feature extraction is to choose good
transformation matrix A. Usually transformation is
limited to linear form. Matrix A can be determined by
using same criterion functions as in feature selection. In
this case optimal matrix A is chosen so that criterion
function J(Ay) is maximized. Usually maximization is
only possible by using numerical optimization and it is
quite time consuming. Another alternative in feature
extraction is use Karhunen-Loéwe transformation which
is discussed in next chapter (Devivjer, 1982).

3. KARHUNEN-LOWE TRANSFORMATION

Karhunen-Lowe transformation is based on discrete
Karhunen-Léwe expansion. In this transformation
original information is preserved as well as possible by
approximating original feature vector using several
terms of expansion.

3.1 Karhunen-Léwe expansion
We have d-dimensional random vectors y and we can

represent these vectors without error by the summation
of d linearly independent vectors as

d
Yy = Z 20, @)
i1

where x; are the coefficients of the basis vectors ¢,. Basis
vectors are orthonormal:

1 fori=j
0 for i#.

o079, = [ @

In this case, the components of vector x can be computed

by

x, =00y, i=l..d. @)

So, x is orthonormal transformation of y. If we want to
decrease the dimensionality of the feature space (d>m)
we simply do not use all basis vectors ¢, but select best
basis vectors. The best basis vectors minimize mean
squared error between original vector y and its
approximation y. The mean squared error can be written
as

375

d
e= Y o/xo, )

i=m+1

We notice that discarded basis vectors affect to error.
Matrix X is autocorrelation matrix of y, also covariance
matrix can be used. Optimum choice for basis vectors is
those which satisfy

o, = Mo, (6)

or eigenvectors of . Combining equations (5) and (6)
mean squared error becomes

)

Mean squared error is minimized when discarded
eigenvectors correspond to smallest eigenvalues
(Devivjer, 1982)(Fukunaga, 1990).

3.2 Summary of Karhunen-Léwe transformation

Presented results can be put on algorithmic form:

1
2.

Compute the correlation or covariance matrix % of y.
Compute the eigenvalues and corresponding
eigenvectors of X. Normalize the eigenvectors.

Form the transformation matrix A from the m
eigenvectors corresponding to the largest eigenvalues
of X.

Compute transformed feature vectors using equation
(1) (Tou, 1974).

4. SELF-ORGANIZING NEURAL NETWORKS

An artificial neural network (referred as neural network
after this) is a parallel, distributed signal or information
processing system, consisting of simple processing
elements, also called nodes. Processing elements can
possess a local memory and carry out localized
information processing operations. In the simplest case
processing element sums weighted inputs and passes the
result through nonlinear transfer function. Processing
elements are connected via unidirectional signal
channels called connections. The connections are usually
weighted and those weights are adapted during training
of the network. Learning of the network is based on the
adaptation of the weights.

The neural network models can be characterized using
their properties like connection topologies, processing
element capabilities, learning algorithms, problem
solving capabilities etc., and models can differ greatly.
Neural networks try to imitate a biological nervous
system and its properties like memory and learning.
(Lippmann, 1987).
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4.1 Self-organizing feature map

Kohonen Self-Organizing feature Map (SOM) is neural
network which is trained using competitive learning.
Basic competitive learning means that competition
process takes place before each cycle of learning.
Competition process means that a winning processing
element is chosen by some criteria. After the winning
processing element is chosen, its weight vector is
adapted according to the used learning law (Hecht-
Nielsen, 1990).

SOM creates topologically ordered mappings between
input data and processing elements of the map.
Topologically ordered means that if two inputs are
similar, then the most active processing elements
responding to inputs are located near each other in the
map and the weight vectors of the processing elements
are arranged to ascending or descending order, w; < w,,,
all i or w; > w,,; all i (this definition is valid for 1-
dimensional SOM). Motivation behind SOM is that some
sensory processing areas of brain are ordered in similar
way (Kangas 1994).

SOM is usually represented as a two dimensional matrix
(also other dimensions can be used) of processing
elements. Each processing element has its own weight
vector and learning of SOM is based on the adaptation
of these weight vectors (Kohonen, 1990).

The processing elements of the network are made
competitive in a self-organizing process and the winning
processing element whose weights are updated is chosen
by some criteria. Usually this criteria is to minimize
Euclidean distance between input vector and weight
vector. SOM differs from basic competitive learning so
that instead of adapting only the weight vector of the
winning processing element also weight vectors of
neighboring processing elements are adapted. First, the
size of the neighborhood is large making rough ordering
of SOM possible and size is decreased as time goes on.
Finally, in the end only a winning processing element is
adapted making the fine tuning of SOM possible. The
use of neighborhood makes topologically ordering process

possible and together with competitive learning makes-

process nonlinear (Kohonen, 1990).

The basic idea is that the weight vectors of the
processing elements approximate the probability density
function of the input vectors. In other words, there are
many weight vectors close to each other in high density
areas of the density function and less weight vectors in
low density areas.

Mathematically speaking, SOM learns a continuous
topological mapping £ B < R —» C < R™ This is
nonlinear mapping from d-dimensional space of input
vectors to m-dimensional space of SOM.  Strict
mathematical analysis exists only in simplified cases of
SOM. It has been proved difficult to express the dynamic
properties of SOM to mathematical theorems (Kohonen,
1990). ‘
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4.2 SOM learning algorithm

[y

. Initialize weights to small random values.

. Choose input randomly from dataset.

. Compute FEuclidean distance to all
elements.

. Select winning processing element j with minimum

distance. Winning processing element is also called

best matching unit (BMU).

Update weight vectors to processing element j and its

neighbors using following learning law. The learning

law moves weight vector toward input vector.

[\

processing

wit+l) = w, + a®@@ - wD), 8

where gain term o (0<o<1) decreases in time. Also,
size of neighborhood decreases in time (only those
weight vectors of processing elements are updated,
which belong to the neighborhood). Here processing
element belongs to the neighborhood, if d.(j,))<T,
where d,, is the Chebyshev distance, j is the winning
processing element, i is another processing element
and T is the threshold which decreases in time.

Go to step 2 or stop iteration when enough inputs are
presented. (Lippmann, 1987)

4.3 SOM in feature extraction

SOM is usually arranged as a two dimensional matrix
(also other dimensions can be used) of processing
elements. As a result of learning phase, those processing
elements which are spatially close to each other respond
in similar way to the presented input pattern. In other
words, map is topologically ordered. Also, SOM makes
nonlinear transformation from d-dimensional inputspace
to m-dimensional mapspace. Mapspace is defined by he
coordinates of the processing elements. All these
properties are useful in feature extraction.

In feature extraction, original feature vector is presented
to SOM and its winning processing element and its
mapcoordinates are searched. These mapcoordinates
could be used as a transformed features, but usually
there is limited number of processing elements and
many different inputvectors get same coordinates. This
means that if the density function of inputvectors is
continuous, the density function of transformed vectors
is not continuous.

Better way to make transformation is to use distances
computed during the search of the winning processing
element. There are two alternatives:

A. Weighted mean of mapcoordinates are computed
using inverse distances from inputvector to
weightvectors as weights. These mean values are
used as a transformed vector.

. The coordinates of BMU are searched and distances
computed from inputvector to BMU (d,) and the
second closest weightvectors (d) in row and column
direction. Transformed value is coordinate of BMU +
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d, / (d,+dg ). Plus is used, if the coordinate of second
closest weightvector is greater than the coordinate of
BMU.

5. EXPERIMENTS

So that Karhunen-Léwe transformation could be
compared to SOM, following experiments were carried
out. Datasets were generated using random number
generator and feature extraction was made. Transformed
datasets were classified and classification error
estimated. This process was repeated 50 times using
different datasets. Criterion to compare results was
minimize the classification error.

5.1 Classification

Classifications were made using the Bayes decision rule
for minimum error. A posteriori probability P(x | ) is
calculated from a’priori probability P;and the conditional
density function (CDF) p(x | ®;) using the Bayes theorem

Pl = Cp(xi

Y px|o) P,
i=1

w) P,
9

where ¢ is the number of classes. When x is to be
classified, the a posteriori probabilities are determined
for each class and x is assigned to the class with the
maximum a posteriori probability.

The value of CDF p(x | o)) determines how closely sample
x belongs to class w. It is estimated using a
nonparametric estimation method called k-nearest
neighbor estimation. This method estimates the CDFs
locally using small number neighboring samples. The %-
nearest neighbor estimate of the CDF of class i is

plx|w) = (10)

where k is number of neighboring samples, n, is number
of samples in class i and v is the volume of hypersphere
which radius is distance between sample x and its kth
neighbor (Devivjer, 1982)

5.2 Error estimation

The probability of error is the most effective measure of
the performance of a classification system. In practise,
the probability of error must be estimated from the
available samples. First a classifier is designed using
training samples and then it is tested using test
samples. The percentage of misclassified test samples is
taken as an estimate of the probability of error.

The probability of error is estimated using resubstitution
(RES) and leave-one-out (LOO) estimation methods. The
resubstitution method uses the same set of samples to
train and test the classifier. Because training set and
testset are same set, errors estimated using this method
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are unreliable, but can be used together with other error
estimation methods like leave-one-out method. In leave-
one-out method each sample is used for train and test,
although not at the same time. The classifier is trained
using (n-1) samples and tested on the remaining sample
(n is the total number of samples). This is repeated n
times with different training sets of size (n-1). The error
estimate is the total number of misclassified samples
divided by n (Devivjer, 1982).

5.3 Datasets

Three different datasets were used. The original
dimension of dataset was 8 and number of classes 2.
Datasets were generated using random number
generator. Number of samples per class was equal to
dimension times N, where N = 5, 10 or 100. Then
generated samples were classified and classification
errors estimated. This was repeated 50 times and each
time samples were generated independently. Finally, the
statistical descriptors, mean value, median value,
standard deviation, minimum and maximum values
were computed from classification errors.

In the first dataset, called II, mean of the first class was
M, =10...0]" and mean of the second class was M, = [2.56
0...0]. Covariance matrices for both classes were identity
matrices 1. In other words, class means differ and
covariances are same. Bayes error is about 10%.

In the second dataset, called 141, mean of both classes
were M, = M, = [0...0]". Covariance matrix for first class
was identity matrix I and for second class 41. In other
words, class means are same and covariances.: differ.
Bayes error is about 9%.

In the third dataset, called IA, mean of the first class
was M, = [0...0] and mean of the second class was M, =
[3.86 3.10 0.84 0.84 1.64 1.08 0.26 0.01]. Covariance
matrix for first class was identity matrix 1 and for
second class the diagonal values were ¥ = [8.41 12.06
0.12 0.22 1.49 1.77 0.35 2.73]. In this case, both class
means and covariances differ. Bayes error is about 1.9%
(Fukunaga, 1990).

5.4 Parameters of algorithms

The transformation matrix in Karhunen-Lowe
transformation was based on the eigenvectors of the
covariance matrix of dataset.

Parameters of SOM were the size of map, size of
neighborhood, number of inputvectors presented to
algorithm, starting value of o and its decreasing method.
In these experiments different sizes of map were used,
sizes 9x9, 11x11, 7x11 and 19x19 processing elements.
Size of neighborhood in the beginning was more than
half of the size of map and decreased linearly until only
one weightvector, BMU, was updated. Number of
inputvectors presented to the algorithm varied also, it
was at least 500 inputvectors per processing element.
When the size of map was 9x9 or 7x11 processing
elements, the number of inputvectors was 50000 or
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100000. When the size of map was 11x11 processing
elements, number of inputvectors was 70000 or 140000.
When the size of map was 19x19 processing elements,
number of inputvectors was 400000.

Parameter for classifier was the number of neighboring
samples, k, used to calculate the value of the conditional
density function of the class. The bias of density
estimate depends on value of %, and value must be
determined experimentally. In these experiments value
of k varied between 1 and 10.

6. RESULTS

Experiments consisted of about 6000 individual testruns.
This is short overview to results.

6.1 Dataset 11

First used feature extraction method was Karhunen-
Lowe transformation. Classification error was about 33%
when dataset II with number of samples in class 40
(N=5, d=8) was classified. In this case RES error varied
between 20% - 30% (deviation 4.5% - 5.5%) with varying
k 2 - 10 and LOO error varied between 39% - 36%
(deviation 7% - 8%) with varying & 2 - 10. When number
of samples in class was increased (N=10) classification
error was about 34%, RES error varied between 21% -
31% (deviation 3.5% -5%) and LOO error varied between
40% - -36% (deviation 6% - 7.5%). When number of
samples in class was again increased (N=100)
classification error decreased to about 28%, RES error
varied between 19 - 28% (deviation 1% - 1.3%) and LOO
error varied between 35% - 30% (deviation 1.6% - 1.9%).
Transformed two features contained on an average
36.5% from original information (percentage of two
largest eigenvalues from all eigenvalues) when N=5,
33.7% when N=10 and 29.1% when N=100.

The results of SOM case A were independent from
number of samples presented to algorithm and the size
of map, variation between different combinations were
small. When N=5, the average classification error varied
between 37% - 39%, RES error varied between 20% -
33% (deviation 4.5% - 6.5%) and LOO error varied
between 45% - 40% (deviation 7% - 10%). When number
of samples in class was increased (N=10), the average
classification error varied between 34.5% - 36%, RES
error varied between 20% - 33% (deviation 2.5% - 4.8%)
and LOO error varied between 42% - 37% (deviation
4.5% - 6.5%). When number of samples was again
increased (N=100), the average classification error
varied between 34% - 35%, RES error varied between
21% - 32% (deviation 0.9% - 1.8%) and L.OO error varied
between 41% - 36% (deviation 1.8% - 2.8%).

Also, the results of SOM case B were independent from
number of samples presented to algorithm and the size
of map, variation between different combinations were
small. When N=5, the average classification error varied
between 37% - 38.5%, RES error varied between 20% -
35% (deviation 4% - 6.5%) and LOO error varied
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between 45% - 41% (deviation 6.5% - 10%). When
number of samples in class was increased (N=10), the
average classification error varied between 33.5% - 36%,
RES error varied between 21% - 33% (deviation 3% -
4.3%) and LOO error varied between 43% - 38%
(deviation 4.8% - 6.2%). When number of samples was
again increased (N=100), the average classification error
varied between 32% - 33%, RES error varied between
20% - 31% (deviation 0.5% - 1.2%) and LOO error varied
between 38% - 35% (deviation 1.5% - 2.0%).

6.2 Dataset I41

Again, first used feature extraction method was
Karhunen-Léwe transformation. Classification error was
about 45% when dataset I4] with number of samples in
class 40 (N=5, d=8) was classified. In this case RES
error varied between 24% - 40% (deviation 4.1% - 5.1%)
with varying 2 2 - 10 and LOO error varied between
51% - 48% (deviation 6.6% - 8%) with varying & 2 - 10.
When number of samples in class was increased (IN=10)
classification error was about 44%, RES error varied
between 25% - 38% (deviation 3.2% -4.4%) and LOO
error varied between 49% - 47% (deviation 5.2% - 6.3%).
When number of samples in class was again increased
(IN=100) classification error decreased to about 43%, RES
error varied between 24 - 38% (deviation 1% - 1.3%) and
LOO error varied between 48% - 46% (deviation 1.3% -
1.8%). Transformed two features contained on an
average 36.4% from original information when N=5,
33.0% when N=10 and 27.4% when N=100.

SOM case A with N=5, the average classification error
varied between 45% - 47.5%, RES error varied between
24% - 42% (deviation 4.5% - 6.5%) and LOO error varied
between 55% - 50% (deviation 6.5% - 10%). When
number of samples in class was increased (IN=10), the
average classification error varied between 45% - 46%,
RES error varied between 24% - 41% (deviation 3% -
4.5%) and LOO error varied between 52% - 49%
(deviation 4.5% - 6.8%). When number of samples was
again increased (N=100), the average classification error
varied between 44.5% - 45.5%, RES error varied between
24% - 41% (deviation 1.0% - 1.5%) and LOO error varied
between 50% - 49% (deviation 1.5% - 2.2%).

SOM case B with N=5, the mean classification error
varied between 45% - 47.5%, RES error varied between
24% - 41% (deviation 4% - 6%) and LOO error varied
between 55% - 50% (deviation 6.5% - 9%). When number
of samples in class was increased (IN=10), the mean
classification error varied between 45% - 46%, RES error
varied between 24% - 40% (deviation 2.5% - 4.5%) and
LOO error varied between 51% - 49% (deviation 4% -
6.9%). When number of samples was again increased
(N=100), the mean classification error varied between
43% - 44%, RES error varied between 24% - 40%
(deviation 0.8% - 1.3%) and LOO error varied between
49% - 47% (deviation 1.5% - 2.6%).

6.3 Dataset IA

Classification error with features extracted using
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Karhunen-Lowe transformation was about 10% when
dataset IA with number of samples in class 40 (N=5,
d=8) was classified. In this case RES error varied
between 7% - 10% (deviation 2.8% - 3.5%) with varying
k 2 - 10 and LOO error varied between 13% - 10%
(deviation 3.5% - 4.7%) with varying & 2 - 10. When
number of samples in class was increased (N=10)
classification error was about 10.5%, RES error varied
between 7% - 10% (deviation 2.5% -3.3%) and LOO error
varied between 13% - 11% (deviation 3.4% - 4.1%). When
number of samples in class was again increased (N=100)
classification error decreased to about 10%, RES error
varied between 7% - 10% (deviation 0.5% - 0.8%) and
LOO error varied between 12% - 10% (deviation 0.8% -
1.0%). Transformed two features contained on an
average 46.6% from original information when N=5,
44.8% when N=10 and 43.0% when N=100.

SOM case A with N=5, the average classification error
varied between 13% - 14.5%, RES error varied between
8% - 13% (deviation 4.5% - 6.5%) and LOO error varied
between 16% - 13% (deviation 6.5% --10%). When
number of samples in class was increased (N=10), the
average classification error varied between 11.5% -
12.5%, RES error varied between 8% - 11% (deviation
3% - 4.5%) and LOO error varied between 14% - 12%
(deviation 4.5% - 6.8%). When number of samples was
again increased (N=100), the average classification error
was 10.5% in all cases, RES error varied between 8% -
10% (deviation 1.0% - 1.5%) and LOO  error varied
between 13% - 11% (deviation 1.5% - 2.2%).

SOM case B with N=5, the average classification error
varied between 13.5% - 15.5%, RES error varied between
7% - 14% (deviation 2.8% - 5.8%) and LOO error varied
between 17% - 14% (deviation 3.8% - 5.6%). When
number of samples in class was increased (N=10), the
average classification error varied between 12% - 13.5%,
RES error varied between 8% - 12% (deviation 1.8% -
3.2%) and LOO error varied between 16% - 13%
(deviation 2.4% - 4.2%). When number of samples was
again increased (N=100), the average classification error
varied between 11% - 12.5%, RES error varied between
8% - 12% (deviation 0.6% - 1.2%) and LOO error varied
between 13% - 12% (deviation 1.0% - 1.5%).

7. CONCLUSIONS

The classification errors using different feature
extraction methods were quite same, differences were
small. Main difference was when number of samples per
class was small, then the classification errors with
features computed using Karhunen-Lowe transformation
were smaller than the classification errors with features
computed using SOM. Another difference was when
dataset II was used, then the classification errors with
features computed using Karhunen-Léwe transformation
were also smaller. When the number of samples per
class increased, the difference decreased. In these cases
feature extraction methods based on SOM can be used,
because computational time is shorter.

379

8. REFERENCES

Devivjer, P., Kittler, J., 1982. Pattern Recognition - A
Statistical Approach. Prentice-Hall.

Fukunaga, K., 1990. Introduction to Statistical Pattern
Recognition. Academic Press, pp. 399-424.

Hecht-Nielsen, R., 1990. Neurocomputing. Addison-
Wesley, pp. 63-65.

Kangas, J., 1994. On the analysis of pattern sequences
by self-organizing maps. Thesis for the degree of Doctor
of Technology, Helsinki University of Technology,
Laboratory of Computer and Information Science, Espoo,
Finland.

Kbhonen, T., 1990. The self-organizing map. Proceedings
of IEEE, 78(9), pp. 1464-1480.

Lippmann, R.P., 1987. An introduction to computing
with neural nets. IEEE Acoustics, Speech and Signal
Processing Magazine, 4(2), pp. 4-22.

Tou, dJ., Gonzales, R., 1974, Pattern Recognition
Principles. Addison-Wesley, pp. 271-282.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B2. Vienna 1996



