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A de-shading problem is presented in this paper. By using a brightness image and its associated height image, the de-shading
problem is stated by estimating the approximate photometric model, the surface reflectance properties and an improved precision of
the given height image. Proposed is a de-shading system. It contains a training frame and a working frame. In the training frame, a
probing algorithm is proposed to determine the approximate photometric model amongst some candidate models. In the working
frame, a region growing algorithm based on least square fitting is proposed to determine the inhomogeneous surface reflectance
properties and a shape from shading algorithm is applied to improve the precision of the given height image. Synthetic images
generated by using the Lambertian model and the Torrance-Sparrow model were used as test images in the experiments. The results

are given to illustrate the usefulness of our approach.

1.INTRODUCTION

There are some common interesting topics in computer vision,
remote sensing, photogrammetry, cartography and their relative
communities, such as shaded-relief, surface reflectance
properties, photometric model, the direction of the light source
and shape from shading (SFS). As is well known, shaded-relief
(shading) is to illuminate a surface by using a given light source
or multiple light sources (Brassel, 1973; Horn, 1982; Zhou and
Dorrer, 1995). The surface reflectance properties are important
to study material properties. This is of interest in remote
sensing for observing Earth and the planets. Recently, the
surface reflectance properties have been determined by using
the range and brightness data (Bibro and Snyder, 1988; Ikeuchi
and Sato, 1991; Kay and Caelli, 1994). Shade recovery is a
classic problem in computer vision. One of the techniques to
recover shape is shape-from-shading, which deals with the
recovery of shape from a gradual variation of shading in the
image (Ikeuchi and Horn, 1981; Pentiand, 1984; Brooks and
Horn, 1985; Lee and Rosenfeld, 1985; Zheng and Cellappa,
1991; Kimmel and Bruckstein, 1995). There exists quite a
number of photometric models, such as the widely used
Lambertian model, the famous Torrance-Sparrow model
(Torrance and sparrow, 1967) and the Phong model (Phong,
1975). These models are used to describe reflectance maps.

The so-called de-shading in this paper deals with the above
topics. Briefly, de-shading is to remove the natural illumination
from an image to obtain the original information of the object in
the image. It is the inverse procedure of shading. As known, a
shading procedure is to generate an illuminated image by using
the given light source, photometric model, albedo or surface
reflectance properties and the height image (digital terrain
model, DTM). Inversely, if one has an image (maybe a remote
sensing image) and its associated height image (maybe a DTM),
the following questions might be interesting. What is the

approximate photometric model of the image? Where is the:

light source for the image? What are the reflectance properties
of the surface? How to increase the precision of the existing
DTM if it is not accurate enough? De-shading tries to solve
these problems.

De-shading is very useful in different application fields such as
computer vision, remote sensing, photogrammetry and
cartography, etc. In the area of remote sensing, e.g., as more
and more DTMs are being successfully generated, one may
want to use the DTM to study the surface properties of the
Earth or other planets. Due to some inadequate conditions (e.g.

inadequacy of matching algorithm, insufficient information in
the shadow region or errors of the interpolation, etc.), the
precision of the DTM may be insufficient. Therefore, to
mncrease the precision of an existing DTM is of great important.
Also, one may want to mosaic two remote sensing images with
different directions of illumination. For this problem, we need
first to remove the illuminations of both images (de-shading),
then re-shade the de-shaded images with an assigned
illumination direction based on the obtained proper photometric
model, reflectance properties and improved precision of the
DTM.

2. CONCEPTION AND DEFINITION

As is known, the visual brightness image is the signal recorded
from one or more sensor(s). The sensor receives the visual light
reflected from the surface of the object. The reflected light
comes from the source light which strikes the surface. If the
illumination of an image is removed, what will remain?
Roughly, there will be nothing to be seen. Because no light
source means no visual information. But if we consider the
information recorded on an image, there should be something
"hidden" under the illumination. The information of a visual
image may contain: the direction and energy of the light source,
the reflectance properties of the surface, the geometric
information of the surface, the photometric model information,
the atmospheric affecting information, the noise information
and so on. Obviously, even if the illumination were taken out,
some image information still exists. In other words, some of the
information hidden in the visual grey values is possible to be
estimated. Of course, it is very difficult to get some of the
information listed above (may not be possible to obtain if there
are not enough additional conditions). We named the process of
obtaining some of the hiding image information as de-shading.
In the following, the definition, the task and the inputs-outputs
of the de-shading are given.

Definition of de-shading: Remove the natural expressive
illumination from a visual image to obtain the original
information of the object and the information in the imagery.

Task of de-shading: Given a real image and its associated
approximate height image, the task of de-shading is to obtain
the photometric model approximating the real image, the
albedo or surface reflectance properties, the direction of the
light source and the improved height image which has a higher
precision than the approximate input height image.
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Inputs and outputs: The inputs of a de-shading system are:
some candidate photometric models, a brightness image and its
associated approximate height image (range image or DTM
image). The outputs are: the light source, the photometric
model approximating the brightness image, the albedo image or

the surface reflectance properties image (the value of each pixel
in each image represents the albedo value or reflectance
property value at its coordinates), the improved height image
which is more precise than the approximate input height image.
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Fig.2. A de-shading system,

3. DE-SHADING SYSTEM

A de-shading system is proposed in the paper to perform the
de-shading task. As described in the above section, the task of
de-shading is to obtain the surface reflectance properties, the
light source, the improved higher precision height image and
the approximate photometric model from a given brightness
image and its associated approximate height image. Obviously,
this is not easy. Fortunately, there exist some methods being
more or less relevant to parts of the task. E.g., the least square
fitting method is used to calculate the surface reflectance
properties (Ikeuchi and Sato, 1991; Kay and Caelli, 1994), SFS
is used to obtain the surface orientation and height image
(Ikeuchi and Horn, 1981; Pentland, 1984; Brooks and Horm,
1985; Lee and Rosenfeld, 1985; Zheng and Cellappa, 1991;
Kimmel and Bruckstein, 1995). But all the methods need some
strong preconditions. Algorithms for calculating surface
reflectance properties assume that the photometric model is
known and that the reflectance properties are homogeneous
over the entire surface, also a precision range image is required.
The SFS algorithms assume that the surface reflectance
properties and the photometric model are known.
Unfortunately, the assumptions might be wrong or the

preconditions might not be available in practice. The
photometric model plays an important role in these problems.
In order to get the approximate photometric model, a probing
method may be appropriate. It means, one can approximate the
correct photometric model by using different known models as
probing models. The proper model will yield the least error
between the brightness image and the shaded image obtained
by using the probing photometric model. But the precondition
of this method needs a precision height image and the correct
photometric parameters (reflectance properties). As we see so
far, the difficulty is that one solution depends on another in a
circular problem. If we divide the de-shading task into three
sub-tasks: Determining Photometric Model (DPM),
Determining Reflectance Properties (DRP) and Determining
improved Height Image (DHI), each of these sub-tasks needs
the outputs of the other two as its inputs. This can be illustrated
as in Fig. 1.

Considering the above analysis, a de-shading system shown in
Fig. 2 is developed to perform the de-shading problem. It
contains two frames. One is the training frame, the other is the
working frame. The inputs to this system are the illumination
direction (7,¥), a brightness image I(x,y), and an
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approximate height image (DTM for remote sensing). In order
to simplify the system, we assume that the light source is
known. This is true for most of the applications. For remote
sensing area, we can get the illumination direction from the
header of the image file. In close-range photogrammetry ares,
the illumination direction is also known, because the light
source is assigned by the experimentater. If the illumination
direction is unknown, one can calculate it by using Pentland’s
method (1982), Lee and Rosenfeld’s method (1989), Zheng and
Chellappa’s method (1991) or others. '

photometric
model

reflectance
properties height

image

reflectance
properties

Fig. 1 Schematic of inputs and outputs
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Fig. 3 Diagram of DPM algorithm.

3.1 Training Frame

The training frame contains one algorithm (DPM) for
determining the approximate photometric model. Some small
regions are selected as the training regions for determining the
approximate photometric model. In our algorithm, five small
regions are selected. One small region is located at the centre of
the brightness image and the height image. The other four are
located at the four centres of the upper-left, upper-right, lower-
left and lower-right quarters of the brightness image and height
image. Several photometric models are assigned as candidate
models. All candidate models are tested in the training regions
to find an approximate photometric model. For every candidate
model, the algorithm (DRP) for determining reflectance
properties (see the working frame) and the algorithm (DHI) for
determining the updated improved height image (see the
working frame) are combined to construct an iterative
procedure to find the goodness of the approximation. A fixed
number of iteration is used in the training frame. After the
iterations, for every candidate photometric model, a set of
reflectance properties (photometric parameters) with respect to
every pixel in the training regions and the updated improved
height data in the training regions are obtained. Using these
reflectance properties and the improved height data, a shading
algorithm is carried out to obtain the artificially shaded regions.
A mean square error, corresponding to every candidate
photometric function, between the shaded region and the
original brightness regions are calculated. The candidate model
corresponding to the minimum error is selected as the
approximate photometric model. Let R; i=1,--,m be the i th

model of m candidate photometric models. Let
¢, (x ) 0, ,(x,y) be the k photometric parameters of the

i th candidate photometric model obtained from DRP after the
iterations. Let p/(x,y) and g/(x,y) be the updated gradients in

the training regions obtained from DHI after the iterations. The
shaded regions I:f (x,y)is

I y) =R (proon, .o, by o 8y )
for candidate photometric model 1. (1)

The mean square error e, ; between the shaded training regions

and the brighmess image in the training regions is

.. 2
e, = Yo Z[en-1u»]
for candidate photometric model i. (2)

The determined approximate photometric model R is thus
given by

m:mi!n@{erli} 3

The DPM algorithm is illustrated in Fig. 3. In fact, it is similar
to the structure of the working frame in Fig. 2.

3.2 Working Frame

The working frame mainly contains two algorithms. The
algorithm DRP is for determining the reflectance properties.
The algorithm DHI is for determining the updated improved
height image. We developed a region growing algorithm to
determine the surface properties within DRP. In DHI, we
follow Zheng and Chellappa’s method (1991).
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By using the photometric model R determined in the training
frame, the known light source, with the brightness image and
the approximate height image, we first estimate the surface
reflectance property images in DRP. The number of the
reflectance property images depends on how many parameters
are used in the determined photometric model. E.g., if it is the
Torrance-Sparrow model, there are three reflectance property
images (the diffusion parameter image, the specular parameter
image and the surface roughness parameter image). The value
of each pixel in the property image represents the value of
surface reflectance property at its coordinates. If it is the
Lambertian model there is only one image containing albedo
values. Then these estimated reflectance properties are used in
DHI to improve the approximate height image. The improved
height image is then used to improve the estimation of the
reflectance property image(s), and so on. Obviously, this is an
iteration strategy. In each iteration, a shading algorithm is
called to obtain the shaded image. The mean square error
between the brightness image and the shaded image is
calculated to determine whether the iteration should be stopped.
If the mean square error does not reduce, the program
terminates and outputs the determined photometric model, the
surface reflectance property image(s) and the improved height
image.

3.2.1 DRP - A Region Growing Algorithm to Determine
Surface Reflectance Properties

So far, our problem becomes to obtain the surface reflectance
properties based on a given photometric model, a given
brightness image and a given height image. Though this seems
similar with the problem in Ikeuchi and Sato’s paper (1991)
and the problem in Kay and Caelli’s paper (1994), there are
significant differences with their cases. We estimate parameters
at each point on the object surface. Our method differs from
that of Ikeuchi and Sato which assumed constant regions. Also,
our method differs from that of Kay and Caelli which used
multiple brightness images obtained with different light
sources.

A region growing algorithm based on least square fitting is
proposed to estimate the inhomogeneous reflectance properties.
In the algorithm, a set of initial reflectance properties are
estimated in a set of kernel surface points. Surface reflectance
properties are obtained by minimizing

- 2
e, = T [1en-Ten]® @)
* Iye ‘Qk
where @, is the set of kernel points, / is the brightness image,
1;‘ is the image irradiance corresponding to the photometric

model K. For the Lambertian model, Eq. 4 becomes

2
e, = X [1txn-c sNen], 3)

LIS ye Q‘
where ¢, is the Lambertian diffuse reflection coefficient. s is

the direction of light source, N is the surface normal. For the
Torrance-Sparrow model, Eq. 4 becomes

2
e, = Y, [l(x»y)—c,,'S-N(x.y)-C,'cXP(-C,Zva(x.y)2) ,

(6)

x,yes,

where ¢, is the specular coefficient, ¢, is the surface roughness

coefficient, ¢ is the specular angle calculated as
a(x,y)=cos™ (H-N(x.y), ™
where H=(S+V)/||s+V]] with v the viewing direction.

The minimization of Eq. 5 to obtain ¢, is simple. To minimize

Eq. 6 to obtain ¢, , ¢, and c,, we follow Kay and Caelli’s

method. From the kernel set, we grow the neighbours of the
kernel set if the neighbours have the same properties as the
kernel set. Whether a neighbour point is to be grown depends
on the error after growing. Let @, +1 denote the new set of the

kernel set @, adding a neighbour point. Let 40, €0 and
¢, g, be three parameters estimated in set 2, . The error g, n
is
€gn = z [I(x,y) =40, +8-N(x,y)—
x,yes, +1

to, (=6, 02 alx) )] @®)

If

<th, ©®

en )+ 1

this neighbour point is added to the kernel set. In Eq. 9, th is a
predefined threshold. Therefore, the new kernel set has one
point more. After the neighbours of the old kemel set Q, are

tested and the kernel set has grown, parameters ¢, , ¢, and c,

are re-estimated and updated. If the kernel set has not grown,
the growing for set 2, is stopped. The growing will start with

a new kemnel set until all points on the surface are estimated.
The initial kernel set can be a small nxn window anywhere.

However, the deviation of [I(x, y)—i,‘(x, y)]2 must be small by

using the estimated parameters in the initial set to guarantee
homogeneity. In the end, points having not been grown are
interpolated by the successfully estimated neighbours.

3.2.2 DHI Algorithm

In fact, DHI is an SFS algorithm to obtain the improved height
image. We mainly follow Zheng and Chellappa’s algorithm
(1991). Their algorithm is a constrained optimization problem
minimizing

[[F(p.q.2) ax dy, (10)

where

F=[R(p.q)~ I(x. )] + :
[R,(P.q) Py + Ry(P.9) 4y = L (x, )] +
[Ry(p.@)- Py + Ry(pq)-qy — I (x, )1 +
plp=Z,) +(a- 2,1 (11
In their algorithm, the intensity gradient constraint and the
height gradient constraint are applied. Using the calculus of

variations, minimization of Eq. 10 is equivalent to solving the
Euler equations:
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J d

F,==F, -5 F, =0, (12.1)
d J

Fq'—gx- A —"E a9y =0| (122)
d

FZ —"b‘x"FZx ——%Fzy =0. (123)

The Euler equations were simplified by taking the Taylor series
of the reflectance map and representing the height, gradient and
their derivatives in discrete form. An iterative strategy was
applied. In a new iterative scheme, the height and gradients
were updated simultaneously. Our algorithm differs from that
of Zheng and Chellappa in two points. One is that we use both
the Lambertian and the Torrance-Sparrow photometric models
instead of only using the Lambertian model. The other is that
we use the analytical way to calculated ®, and R_ instead of

using the numerical way. Zheng and Chellappa numerically
calculated R, and R, as

(13.1)
(13.2)

R, =R(p.q)~ R(p+4p,q),
R, =R(p.q) - R(p,q+4q),

where Ap = Aq is a positive small constant. This is reasonable
because they started their algorithm in the zero initial values of
both height and gradient. As there is an approximate height
image, therefore the approximate p and g images are
available, too; in our case, we analytically calculate ®, and R,.

For the Lambertian model, we have

RP =P'(1+P2+q2)'3/2'(8,-S,'P—S,'q)”

s, JQ+p+ ), (14.1)
R., =‘I‘(1+P2+q2)'3’2'(6‘,—-?, -p—s,~q)-
s, [+p* +4*)'?, (14.2)

where s,, s, and s, are three components of the source
direction. For Torrance-Sparrow model, we have

R,==c,[8, (P 8/[8+s.)—
2-cocl 0 g,exp(=cl-@*)[g,(p-gsfe, +h,), (15.1)

Ry=—c,/81(q-83/82+5y)—
2-cocl0g, -exp(-c} -0 )fg, (g 858, +h,), (15.2)

with

& =0+p*+g*)/?,

g, =1+p*+4*,

83 =sz—sx'P_Sy'q’

g, ==1[{1-(H-N)?,

gs=h—h-p—h,q,

where h,, h, and h, are three components of the vector H
(see Eq. 7).

4. EXPERIMENTS AND CONCLUSION

We tested our de-shading system with two height images: a
DTM of the Mars area CALYDON FOSSA (from University
College London) and the Mozart height image (see Fig. 4 and
Fig. 5). The associated brightness images were synthetically

generated by using three simulating photometric parameter -
maps with respect to the diffuse coefficient ( c,-map), specula
coefficient (c,-map) and surface roughness coefficient (c,-
map). They are shown in Fig. 6, Fig. 7 and Fig. 8, respectively.
The values in the upper-left, upper-right, lower-left and lower-
right quarters are 0.25, 0.5, 0.75 and 1 in Fig. 6, respectively;
0.75, 0.5, 0.25 and 0 in Fig. 7, respectively; 5, 7, 3 and 0 in Fig.
8, respectively. For the Mars DTM, Fig. 12 shows the synthetic
brightness image by using the Lambertian model and c,-map,

Fig. 18 using the Torrance-Sparrow model and ¢,, ¢, and c,-

maps. The direction of light source is 0° azimuth and 45° slant
in both Fig. 12 and Fig. 18. For the Mozart height image,
Fig. 29 shows the synthetic brightness image by using the
Lambertian model and the c¢,-map, Fig. 34 using the Torrance-

Sparrow model and ¢,, c, and c,-maps. The direction of light

source is 135° azimuth and 45° slant in both Fig. 29 and Fig. 34.
In order to simulate the lower precision DTM, we down-
sampled the two height images every four rows and every four
columns. Then bi-linearly interpolated the points between the
samples. Fig. 9 and Fig. 26 show the lower precision height
images with respect to Fig. 4 and Fig. 5. In order to show the
effect of down-sampling, we shaded Fig. 9 and Fig. 26 by using
the Lambertian model and a constant ¢, value (see Fig. 10 and
Fig. 27). As the plotting size of the image in this paper is
reduced, the detail is difficult to be seen. We plot the middle
parts of the original images (see Fig. 11 and Fig. 28) to show
the details. The re-shaded images in the same parts are plotted,
too (see Fig. 16, Fig. 24, Fig. 33 and Fig. 40).

The system correctly estimated the photometric model in every
image, i.c., the Lambertian model in Fig. 12 and Fig. 29, the
Torrance-Sparrow model in Fig. 18 and Fig. 34. Fig. 13--14
show the obtained ¢, map and updated DTM after de-shading.
Fig. 15 shows the re-shaded image by using the same light
source, the obtained ¢, map and the updated DTM. Fig. 17
shows the re-shading result by changing the light source to

(135°, 45°). Fig. 19--22 show the obtained c,, c, and ¢, maps
and updated DTM after de-shading. Fig. 23--25 show the same
results as Fig. 15--17 but with the Torrance-Sparrow model.
Fig. 30--33 and Fig. 35--40 show the same results as Fig. 13--
16 and Fig. 19--24 but in the Mozart image. It should be
pointed out that all the plotted images are linearly stretched in
grey level. Tab. 1 (for the Lambertian Model) and Tab. 2 (for
the Torrance-Sparrow Model) give mean square errors between
the estimated maps and the original simulating maps of the
photomeltric parameters; the mean square errors between the re-
shaded brightness images and the original synthetic brightness
images. In Tab. 1 and Tab. 2, the column Sn means the number
of rows and columns used in down-sampling to generate the
lower resolution of height images. The mean square errors of
the brightness is based on the normalized values.

The results show our de-shading system works in what we
expected. The re-shaded images by using the estimated
photometric models, its corresponding parameters and the
improved height images are close to their original brightness
images. But the errors are also obvious, specially in the
Torrance-Sparrow model. This is because that inside and near
highlight boundaries the solution is quite unstable, and outside

such boundaries exp(~c,?-o®) is too small to allow a

meaningful solution for ¢, . It seems we need to improve both

the algorithms of estimating the reflectance properties and SFS
to reduce the error and improve the results. This will be our
forward research task.
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Mars image Mozart image Mars image Mozart image

Sn §¢ ,-map brightness{ ¢, -map prightness Sn ic ,-map { ¢,-map | ¢,-map prightness| ¢, -map § ¢,-map | ¢,-map brightness

2 10.0025 §0.0377 | 0.0025 § 0.0024 2 10.0121 § 0.0997 { 6,4647 § 0.0509 ] 0.0451 §0.0319 i 6.0216 § 0.0318

3 10.0043 §0.0418 ] 0.0022 : 0.0039 3 10.0149  0.0329 §6.3290 § 0.0550 | 0.0398 § 0.0581 { 6.0016 § 0.0335

4 10.0105 §0.0448 | 0.0016 ; 0.0055 4 §0.0134 §{ 0.0563 § 6.2307 { 0.0489 | 0.0432 { 0.0991 § 6.0239 §{ 0.0338
Tab.1 Mean square errors for Tab. 2 Mean square errors for the Torrance-Sparrow Model

the Lambertian Model.

Fig5 Fig. 6 Fig.7

Fig. 8 Fig. 9 Fig. 10 Fig. 11

Fig. 12 Fig. 13 Fig. 14 Fig. 15

Fig. 16 Fig. 17 Fig. 18 Fig. 19

1033
International Archives of Photogrammetry and Remote Sensing. Voi. XXXI, Part B3. Vienna 1996



%

Fig.28 Fig. 29 Fig. 30 Fig. 31
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Fig. 4 A DTM of the Mars area CALYDON FOSSA; Fig. 5 A Mozart height image; Fig. 6--8
Simulating c¢,, ¢, and ¢,-maps; Fig. 9 Down-sampled image of Fig. 4; Fig. 10 Shaded image
of Fig. 9; Fig. 11 The middle part of the original image of Fig. 10; Fig. 12 The synthetic
brightness image by using the Lambertian model and c,-map, the direction of light source is

0° azimuth and 45° slant; Fig. 13 The estimated c,-map; Fig. 14 The improved DTM of
Fig. 4; Fig. 15 The re-shaded image using the ¢,-map in Fig. 13 and the same light source in
Fig. 12; Fig. 16 The middle part of the original image of Fig. 15; Fig. 17 Same as in Fig. 15,
but change the azimuth to be 135° Fig. 18 Same as in Fig. 12 but using the Torrance-Sparrow
model; Fig. 19--21 The estimated ¢,, ¢, and c,-maps; Fig. 22--25 Same as in Fig. 14--17

but with the Torrance-Sparrow model; Fig. 26--40 Same as in Fig. 9--25 but with Mozart
image and without the re-shaded image by changing the azimuth.

Fig. 40
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