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ABSTRACT:

As a part of our serial researches, this paper presents methodologies for modeling spatial relations between uncertain sets. The
uncertainty of spatial relations may arise through the fuzzily defined concepts or linguistics, the presence of varying shapes and
features of complicated spatial objects, and the imprecise measurements of spatial data. By using fuzzy set theory, Mathematical
Morphology, and the dynamic 9-intersection model for integrally representing spatial relations [Chen, et. al. 1995, 1996], a fuzzy 9-
intersection model is developed in which the spatial relations are defined in terms of the intersections of the boundaries, interiors

and exteriors of two dynamically generated uncertain sets. Then, the presented models are extended for quantitatively deriving the

spatial relations between sets in consideration of conceptual and positional uncertainties. Finally, some potential applications of

presented theories and the ideas for spatial and temporal reasoning in Geographical Information Systems (GIS) are also suggested.

1. INTRODUCTION

Geographical Information Systems (GIS) have evolved from
tools for spatial data management and cartography into
sophisticated decision support systems that utilize variety of
spatial and tabular analysis to derive new information. These
systems are finding a wide variety of applications including:
urban and regional planning; environmental and resource
management; facilities management; archaeology, and market
research. In the field of GIS research and application, one of the
most fundamental requirements is to modeling and
communicating error in spatial databases. With increased
research into error modeling over the past few years, there has
been a considerable body of models and techniques available
for measurement spatial and temporal database error from
researching to real applications [Goodchild, 1989; Hunter and
Goodchild, 1995; Shibasaki, 1994; Vergin, 1994]. Spatial
relationships (such as distance, direction, ordering, and
topology) between spatial objects, as very useful tools for
spatial and temporal reasoning in GIS, may be strongly
influenced by the uncertainties of original data. The practical
needs in GIS have led to the investigation of formal and sound
methods for driving spatial relations and their variations with
uncertainties [Chen and et.al., 1995, 1996, Egenhofer and
Franzosa, 1991; Frank, 1992; Kainz, et.al., 1993;

Zhang, 1987]. However, how to derive spatial relations between

Peuquet and

uncertain sets based on an mathematically well-defined algebra
framework is still an open problem up to now. The lack of this
comprehensive theory has been a major impediment for solving
many sophisticated problems in GIS, such-as formally deriving
spatial relations between complicated spatial objects, spatial
and temporal reasoning in GIS with multiple representations,
and generation of the formal standards for transferring spatial
relations.
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As a part of our serial researches, this paper presents
methodologies for modeling spatial relations between uncertain
sets. The uncertainty of spatial relations may arise through the
fuzzily defined concepts or linguistics, the presence of varying
shapes and features of complicated spatial objects, and the
imprecise measurements of spatial data. By using fuzzy set
theory, Mathematical Morphology, and the dynamic 9-
intersection model for integrally representing spatial relations
[Chen, et. al. 1995, 1996], a fuzzy 9-intersection model is
developed in which the spatial relations are defined in terms of
the intersections of the boundaries, interiors and exteriors of
two dynamically generated uncertain sets. Then, the presented
models are extended for quantitatively deriving the spatial
relations between sets in consideration of conceptual and
positional uncertainties. Finally, some potential applications of
presented models and the ideas for spatial and temporal
reasoning in GIS are also suggested.

This paper is structured into three main sections that follow this
introduction. Section 2 contains a review of related definitions
concerning uncertainty and imprecision for deriving spatial
relations. In section 3, after the brief introduction of some
fundamental theories, the
developed for integrally deriving spatial relations between

fuzzy O-intersection model is
uncertain sets. Section 4 contains the extensions of the
presented theories for deriving conceptual and positional
uncertainties between sets. In the last section conclusions and
outlook for further research are given.

2. UNCERTAINTIES OF SPATIAL RLATIONS
Uncertainty and imprecision refer to the degree of knowledge

(or ignorance) which we have concerning some domain of
interest. Uncertainty is an assessment of our belief (or doubt) in
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an outcome, based on the available data. Typically uncertainty
is modeled by probability theory. Imprecision is a feature of the
data itself. It refers to data expressed as a range of possible
values. Other descriptions of data are accurate and exact,
approximate, and ambiguous. Geographical features, such as
spatial relations, may contain many kinds of uncertainties
which are often caused by the fuzzily defined concepts and
linguistics, the presence of varying shapes and features of
complicated spatial objects, and the imprecise measurements of
spatial data. In following section, we will briefly introduce
these uncertainties of spatial relations.

2.1. Conceptual Uncertainties

Conceptual uncertainties of spatial relations in GIS are mainly
caused by the fuzzy linguistic and conceptual variables. For
example, we often use the fuzzy concepts (such as near, far,
almost west, middle cast, and et. al) to deriving metric
relations. In this case, the metric relations are derived by a set
of metric values together with their fuzzy memberships. The
fuzzy membership is generally a real number on [0,1], where 0
indicates no membership and 1 indicates complete membership.
Similarly, the fuzzy concepts of weak connected, strong
connected, almost same, big different, and et. al., are caused the
uncertainties of topologic and ordering relations. It should be
emphasized that topologic relations are generally independent
on the geometry, but topologic relations usually are derived
from geometric descriptions, so this is also necessary when
taking the
consideration which of cause leads to derived quantities of

uncertainty of the geometric

uncertainty of the topologic relations. Some related examples
are shown in Fig.1 (a)-(¢).

Fig.1(a). Fuzzy distance describing near, middle and far

Fig.1(b). Topologically met objects with the weak
and strong connections

O

Fig.1(c). Directionally ordered objects with the
almost same and big different orientations
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Fig.2(c). Ordering between points and objects

2.2. Object Feature Uncertainties

Object feature uncertainties of spatial relations in GIS are
mainly caused by the ambiguous variables of object shapes,
sizes and distributions. A metric relation between two
arbitrarily-shaped objects is a fuzzy concept and is thus often
dependent on human interpretation [Fig.2(a)-(b)]. The simplest
way to calculate the distance or direction between two objects is
to convert the object calculations to the represented point
calculations, such as using the distance between two capitals to
represent the distance between two countries. But this method
will cause many problems when the country is big and its shape
is complicated. As the descriptions in Chen and et. al [1995,
1996], the rigorous method to calculate metric relations
between two arbitrarily-shaped objects is to calculate the
Hausdorff distances and directions between their sub-sets of
objects and their fuzzy memberships. The general Hausdorff
metric between two objects is just the special case of its fuzzy
membership value equals to 1. Similarly, the object shape and
distribution may cause the uncertainties of ordering relations
[Fig.2(c)], but don’t influence topologic relations. The ordering
relations between objects can be derived by the method of
partial-ordered segmentation of objects [Chen and et. at., 1995,
1996].

2.3. Data Uncertainties

Data uncertainties of spatial relations in GIS are mainly caused
by imprecise measurements of spatial data. Generally, the
locations of objects in spatial databases are not error-free, they
may contain many kinds of errors, such as the errors of scanning,
digitizing, selecting, projection, overlaying, and
[Goodchild and et.al., 1989]. For describing the uncertainty in
the positions of spatial objects (such as lines and areas), we can
use the error model of & -band developed by Chrisman [1982],

in which the positional uncertainty of a spatial object K, can

et.al.
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Fig.3(a). Positional uncertainties of distance relations

e~
Fig.3(b). Positional uncertainties of topologic relations
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Fig.3(c). Positional uncertainties of ordering relations

be represented as I?izKi@/J(S) , where & is the buffer

distance of error distribution and u(g) is the fuzzy
membership function derived by & . As shown in Fig3(a)-(c),

spatial metric, topologic and ordering relations between
error € -band generated objects will cause different kinds of

uncertainties.
3. FUZZY 9-INTERSECTION MODEL
3.1. 9-Intersection

For driving binary topological relations between sets, Egenhofer
et al., (1994) developed the 9-intersection model based on the
usual concepts of point-set topology with open and closed sets,
in which the binary topological relations between two objects,
K, and K,,in IR’ is based upon the intersection of K’s

interior (K7 ), boundary (K ),and exterior (K, ) with K,’s
interior (K7 ), boundary (ZK,), and exterior (K, ). A 3x3

matrix 3, , called the 9-intersection as follows:

KYNK; KK, K/ NK;
I’ = K, NK; K,NK, CK,NK; [1]
K nK; K K, K, NK;

By considering the values empty (0) and non-empty (1) in
equation [3], one can distinguish between 2°=512 binary
topological relations in which only a small subset can be
realized when the of concern are embedded
in IR? [Egenhofer and Franzosa, 1991; Mark and et. al., 1995].
The beauty and simplicity of 9-intersection model come from

objects

the fact that it can solve the topologic and geometric problems
by using the formal logic and algebraic methods. Since present

digital computers are very strong for logic and arithmetic

calculations, but they are poor for high level geometric and
topologic reasoning. So the 9-intersection model has the
potential abilities for automatically spatial and temporal
reasoning.

3.2. Dynamic 9-Intersection

For integrally deriving different kinds of spatial relations
between sets, Chen and et al. (1995, 1996) developed the
dynamic 9-intersection model based on the concepts of the
metric topology with open and closed sets and the
morphological dilation, in which the general 9-intersection of
equation [1]is extended as follows:

[K\@B(e, )]’ KS

[K®B(e)'NK,  [K@B(e)I'NK;

S ()= AK®B(eNINK;  AK®B(e)NK, AK®B(e)NK,;
[K,®B(e)] NK]

[K,®B(¢)] K, [K®B(e)] NK;

2
where the K| and K, are given two closed sets, the Ki@B(s[‘ )]
means relevant morphological dilation by the closed ball B with
radius €, , and the Sfm.) (&, ) means dynamic 9-intersection with
parameter £, from K, to K] Based on the equation [2], we

can derive dynamic topological relations by using the different
parameter €, . In particular case, wheng, =0, we have
K ®B(g,)=K ®{0o}=K,, then the dynamic Y-intersections
~9

S

and ct. al., 1995, 1996].

(&,) coincide with the general 9-intersection J, [Chen

3.3. Fuzzy 9-Intersection

For deriving different kinds of spatial relations between
uncertain sets, we can extend the 9-intersection model to the
fuzzy 9-intersection model as follows:

K

Fig.5. Space segmentation of dynamic 9-intersection model
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| 0K =5K,=0K @,

K =6K U(K —5K,)

K =(5K,)* (K, USK,)"

K'=(6K,)" (K, 8K, )"

KK p(KneK) u(KNK)
3.5 HEK,NKD) 1(GKNEK,) 1n(KNKS) [3]
HKTNK]) (K NoK,) p(KINK;)

where the K, and K, are given two closed sets; the generated
fuzzy sets in consideration of data positional uncertainties are
defined as 0K, =6K, =K ®¢,, K =5K AK,-5K.), K =(5K)
UK USK) and K'=(5K)*AK,~6K,)*; and p(*) is a
kind of metric functions which are used for deriving the fuzzy
memberships based on the generated sets by logic intersections.
For different purposes, the function u(*) may take the different

forms as used below.

4. SPATIAL RELATIONS BETWEEN UNCERTAIN
SETS

Since the object feature caused uncertainties of spatial relations
can solved by using Hausdorff metrics between sub-sets [Chen
and et. al., 1995, 1996], we only discuss the problems of
conceptual and positional uncertainties of spatial relations in
this paper. For reasons of simplicity the spatial relations
between closed regions discussed in this paper only, related
models for estimation of conceptual and positional fuzzy
membership functions are defined as following sections.

4.1. Conceptual Uncertain Relations

For deriving conceptual fuzzy topologic relations, such as weak
meet and strong meet which were discussed in the section 2.1,
we can use the fuzzy 9-intersection model by selecting
£,=0and IZEK,. ,then choice the following u(*) to calculate

related fuzzy memberships from object A to B:

Line length: #(aAnng):_/‘(aAmaB ) [4]
£(64)
: - NR:D
Area size: A°NB*)= 5
Sren izl H( == 70 [5]
. _J0, when *=¢;
Others “(*)‘{1, Nhen g 16

where " * " means logically intersected sets, £(*) and A(¥)are
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the line lengths and area sizes. Generally the binary topologic
relations between objects A and B derived by equation [3] are
not symmetry , i.c.

According to the fuzzy set theoretic operations [Zadeh, 1965],
we cans either use union Max[u(A4,8),u(B,4)] or intersection

Min[u(A,B),u(B,4)] of two fuzzy memberships to integrated

3, usually is not equals to 3 .

deriving fuzzy topological relations. For example, to calculate
the fuzzy topologic relations of Fig.1(b) by using the union
fuzzy memberships, we can get following results for left and
right figures respectively:

the left figure in Fig.1(b):

_ fooo _ Jo o
3,500031], T, =00081;
1 1
o 0 0 1
Max(3; .3, )= 0 008 1
1 1 1
the right figure in Fig.1(b):
_Joo 1] _ foo
,900231], F,,=00791];
1
. 0 0 1
Max(S,,,5;,,)= 0 079 1
1 11

For deriving conceptual fuzzy metric relations, such as near and
far, we can firstly use the fuzzy 9-intersection model to generate
uncertain set K, based on given fuzzy membership functions,

then use the uncertain object I'i. as instead of the general object
K. to calculate Hausdorff metrics between uncertain sets or

sub-sets [Chen and et. al., 1996]; After that we quantitatively
estimate the conceptual fuzzy membership functions between
uncertain subsets by using the p(*) in equation [3] as follows:

Solid volume:  u(4°NB°)= A NB") (%)) [7]
A(A Y p,(x,y)
0, when *=¢;
N Ry > B
Others. /1( )—{1’ when *¢¢; [8]

where "*" means logically intersected sets, g, (x,y)is the

given fuzzy membership function for description of uncertain
metric concepts, A(*) is area size of logically intersected two

objects, and p(4°MNB°) is calculated fuzzy memberships of

derived uncertain spatial metric relations.
4.2. Positional Uncertain Relations

For deriving positional fuzzy topologic relations, we can use the
fuzzy 9-intersection model to generate uncertain set K, based

on uncertain ¢ -band, then choice the following u(*) to
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calculate related fuzzy memberships from object A to B [Fig.7]:

{[(A4' "B YA], A%
2¢

A

where " * " means either interior (o) or exterior (-), d_ (*) is

min

~ . 1-d
(A B )= 9]

the minimum distance between two sets, and the g, is the
positional uncertain & -band of object A. Generally the binary
topologic relations between objects A and B derived by

9

equation [3] are not symmetry , ie. 3

T, - According to the fuzzy set theoretic operations [Zadeh,

usually is not equals to

1965], we cans either use union or intersection of two fuzzy
memberships to integrated deriving fuzzy topological relations.

0 /4 2

Fig.8. Fuzzy memberships for deriving directional relations

For describing the uncertainty in the positions of spatial objects
(such as lines and areas) and deriving positional fuzzy metric
relations, we also use the error model of £ -band in which the

positional uncertainty of a spatial object K, can be represented
as I?i:K,.@T(e) , where € is the buffer distance of error
distribution . According to Chen and et. at. [1995,1996], we can
separate the processing of deriving spatial metric relations
between uncertain sets to two steps. Firstly we use the
uncertain object K, as instead of the general object K, to
calculate Hausdorff metrics between uncertain sets or sub-sets ;
Secondly we quantitatively estimate the positional fuzzy
membership functions between uncertain subsets by using the
measurement of dynamic covering uncertain areas as follows:

R®BMINK )+ 4K K @B}
A(K)+A(K,)

A{[R ®@RONK, 1+ A{K N K ®R(027)]}

A(K)+A(K)

(10]

O,(0)=

where Iizl%-K:[K ®T(£)]-K means the uncertain area
generated by the related € -band, 4{*} means the covered
area sizes, and @ (A) and (AZA (6) are distance and directional

fuzzy membership functions separately. An example of
positional uncertainty of spatial directional relations between
two spatial regions is shown in Fig. 8.

6. CONCLUSIONS AND OUTLOOKS
9-intersection model as powerful tool for formally deriving

The beauty and simplicity of 9-
intersection model come from the fact that it can solve the

topological relations.

topologic and geometric problems by using the formal logic and
algebraic methods. Since present digital computers are not very
strong for high level geometric and topologic reasoning, the 9-
intersection model has the potential abilities for automatically
spatial and temporal reasoning. As the natural extension of
general 9-intersection model, a fuzzy 9-intersection model is
developed for studying different kinds of spatial relations
between uncertain sets. Even though the presented approach is
only focus on the applications in GIS field, the related results
for deriving spatial relations between sets can be also used for
many other fields, such as CAD, computer vision, pattern
recognition, robot space searching and so on. However, only
the theoretical models and algorithms have be presented in this
paper, a wide field of practical application for data management
and spatial data analysis in 2-D and 3-D GIS environments
has not been touched. Therefore, the reported results must be
verified and extended in order to be used in different practical
environments.

Our further research will be concentrated on two main
directions, one is the applications of the presented theoretical
models and algorithms in 2-D and 3-D GIS environments for
developing the new tools of spatial and temporal reasoning;
another one is the extensions of presented theories and models
for formally deriving complex spatial relations among spatial
objects with multiple representations.
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