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ABSTRACT

This paper shows some combinations of classifiers that achieve high accuracy classifications.
maximum likelihood classification as the initial classification for the contextual correction.

Traditionally it is used the
We will show that using non-

parametric spectral classifiers to obtain the initial classification we can improve the accuracy of the classification significatively
with a reasonable computational cost. More specifically we propose to apply the contextual correction performed by the [CM

algorithm to some non-parametric spectral classifications.

1 INTRODUCTION

Supervised classifiers assume the existence of a training set
T composed by n iabeied training samples, where the iabeis
represent informational classes (labels). This information is
used for learning -construction of the classifier- and usually
for testing too. We will note by Q = {wi,ws,...,ws} to the
set of informational classes and by X to the samples used for
learning and classifying. We assume they are d-dimensional
random variables.

Spectral classifiers use only the spectral information related
to the pixel to be classified. The thematic map they give as
output has the overall impression of a “noisy” classification.
This effect is more evident when there is overlapping among
the training sets in the spectral space [Cortijo et al., 1995].
In this case it is necessary a post-processing over the initial
classification because it is expected to find homogeneous re-
gions in the map as they can be found in the Nature. The
straightforward solution consists in incorporating additional
information into the classifier related to the spatial neighbor-
hood -its context- of the pixel to classify. That information
may be the spectral values of the spatial-neighbors pixels,
their labels or both kinds of information combined in some
way. When this kind of information is used for classification
the classifier is known as a contextual classifier.

From a general point of view a contextual classifier can be
seen as a smoothing process over an initial image of labels.
This map is obtained usually by a spectral classifier. It is
well known that some contextual classifiers achieve a local
optimum [Besag, 1986] determined by the initial classifica-
tion. It is used traditionally the maximum likelihood (ML)
classification as the starting point for the smoothing process.
We have shown [Cortijo & Pérez de la Blanca, 1996a] that
the ML classifier is not the best choice when the training
sets are high-overlapped. In this work we propose the use of
different spectral classifications as initial classifications to a
contextual classifier in order to obtain high-accuracy classi-
fications with a reasonable computational cost.

In order to achieve a higher accuracy it looks reasonable to

*This work has been supported by the Spanish “Direccién Generai de
Ciencia y Tecnologia” (DGCYT) under grant PB-92-0925-C02-01
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adopt a high accuracy spectral classification as starting point
to the contextual classifier, given that contextual classifiers
assure convergence to a local maximum. Our proposal con-
sists in adopting different spectral classifications as starting
points with the aim of improving the accuracy of the conven-
tional methodology consisting in contextually correcting the
ML classification. Many others spectral classifiers improve
significatively the results obtained by the ML classifier and
the classifications obtained by them are good candidates to
be the initial classifications for contextual classifiers. Finally,
we must considere the required computational effort to per-
form the global process: spectral classification followed by
the contextual classification. For a particular contextual clas-
sifier it is obvious that the contextual classification effort is
the same for any initial classification, thus the global com-
putational effort is determined by the spectral classification
computing demands.

This paper is organized as follows: In section 2 we describe
the methodology we have adopted in this work together with
a brief description of the classifiers we have used. In section 3
we describe the datasets used in this paper and in section 4
we show the results obtained. Finally, the main conclusions
we have achieved are summarized in section 5.

2 METHODOLOGY

Our objective in this work is to show some combinations of
classifiers that achieve high-accuracy classifications. In order
to determine some interesting combinations of classifiers for
Remote Sensing image classification we have tested a wide
number of families of spectral and contextual classifiers.

2.1 Spectral Classifiers

Spectral classifiers are partitioned in two main categories:
a) parametric classifiers, if they assume the existence of an
underlying probability distribution of the data and b) non-
parametric classifiers, if they do not assume anything about
the probability distribution.

The structure of the Bayes classifier is determined, basically,
by the probability density functions (pdf's) p(X|w;). The
objective in the construction of a supervised parametric clas-
sification rule is to characterize the pattern of each class in
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terms of its pdf. It is assumed that it is known the form of that
function, that is, it is only needed to know some parameters
(estimated from the training set) in order to characterize each
class. The pdf’s are usually multivariate Gaussian functions
so it is only needed to estimate two sets of parameters for
each class: the mean vector, y; and the covariance matrix,

The maximum likelihood classifier (ML classifier) imposes
quadratic decision boundaries between the clusters of samples
in the representation space. If it is assumed a common co-
variance matrix, ¥; = X for 1 = 1,2,...,J, then the quad-
ratic classifier yields to a linear classifier in which the decision
boundaries have a linear form. The quadratic classifier is more
sensitive to the violation of the Gaussian assumption of the
pdf's than the linear classifier [Lachenbruch, 1979] and the
training set size required by a quadratic classifier is higher
than the training set size required by a linear classifier. It
is well-know that the Hughes effect [Hughes, 1968] arises in
high dimensionality data when the training set size is not large
enough to estimate properly the covariance matrices.

When adopting a quadratic or a linear classifier we are impos-
ing an extreme degree of adjustment of the decision bound-
aries to the training samples. When the training samples are
highly overlapped in the representation space they are not
good choices and it is plausible to allow a wider degree of
adjustment, that is, a wider set of possible decision boun-
daries. This can be achieved using the regularized discrim-
inant analysis classifier (RDA classifier) proposed by Fried-
man [Friedman, 1989]. '

RDA allows a wide family of parametric classifiers includ-
ing the quadratic ML classifier and the linear classifiers as
particular cases. The estimation of the covariance matrices
is performed by a regularization process determined by two
parameters, the values of which are customized to individual
situations by jointly minimizing a sample-based estimate of
future misclassification risk. The joint optimization of these
parameters minimize the cross-validation error so this tech-
nique is more convenient for problems in which the training
set size is small.

In most classification applications the assumption that the
forms of the underlying density functions are known is unreal-
istic. The common parametric forms rarely fit the densities
actually encountered in practice. For instance, the paramet-
ric models manage unimodal densities whereas many practical
problems present multimodal densities [Duda & Hart, 1973].
The only available information is the training set and the clas-
sification rules must be built just from it with no additional
assumptions.

We can find a wide variety of spectral non-parametric
classifiers. They can be summarized in three main
categories. The first approximation consists in non-
parametric statistical techniques to estimate p(X|wi)
(nearest neighbor estimation techniques and kernel es-
timation techniques [Duda & Hart, 1973], [Parzen, 1962],
[Devijver & Kittler, 1982]). The second consists in estimate
directly the a posterior probability p(w;|X) (nearest neighbor
classification rules [Devijver & Kittler, 1982]) and the third
consists in splitting recursively the representation space by
means of binaries questions related to the values of the vari-
ables involved (classification trees). In this work we have ad-
opted two different approaches due to their wide use, accuracy
and knowledge: we have used CART [Breiman et al., 1984]
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as classification tree based technique and the nearest neigh-
bor classification rules [Devijver & Kittler, 1982] applied to
many different reference sets which have been built by many
different learning algorithms, as we will see below.

One of the most popular and widely used non-parametric clas-
sification rule is the k nearest neighbor rule (k-NN). In the
simplest formulation, given a training set 7, a metric § on the
representation space and a sample to classify X, the k-NN
searches the k nearest neighbors to X in T and assigns to X
the most populated class in the selected neighbors. If k =1
the k-NN rule is known as the nearest-neighbor-rule or 1-NN
rule. In this work we will note by 1-NN to the 1-NN classifier
that uses the complete (as given by experts) training set to
search the nearest neighbor.

The requirement of a large training set to assure the con-
vergence of the k-NN rule [Devijver & Kittler, 1982] is the
main drawback of the nearest neighbor rules in practical
problems.  Moreover there are two additional drawbacks
in the application of these rules: firstly, they are very in-
fluenced by incorrectly labeled training samples (“noisy”
samples or outliers) and secondly, the computational com-
plexity associated to the search of the nearest neighbor(s)
in T can be O(n?) or higher. To circumvent these prob-
lems it is possible to obtain a reduced and representative
reference set, R, from 7 with the objective of searching the
nearest neighbor(s) in R with an acceptable trade-off between
the accuracy of the classification and the required com-
putational effort ([Devijver & Kittler, 1982],[Kohonen, 1990],
[Geva & Sitte, 1991] among others). This can be done in two
ways: a) by editing-condensing techniques or b) by adaptat-
ive learning techniques. In the first case R C 7 whereas in
the second case there is not an explicit relation between both
sets.

The aim of editing-condensing techniques is two-fold: improv-
ing the accuracy of the classification by removing samples loc-
ated in overlapping acceptation surfaces (editing techniques)
and decreasing the computational effort required to find the
nearest neighbor(s) (condensing techniques). Editing tech-
niques take as input the original training set and give as out-
put a subset of the original training set. Condensing tech-
niques take usually as input the edited training set and give
as output a subset of the previously edited set. R is a reduced
(sometimes drastically) and representative version of 7. The
joint application of these techniques improve the trade-off
between the accuracy of the 1-NN classification and the com-
putational effort required for that classification. A different
approach consists in adaptative learning techniques. Adapt-
ative learning is a powerful alternative to classical editing-
condensing techniques as it allows to fix the reference set
size. Now the reference set is not usually a subset of the
training set. Adaptative learning algorithms can be tuned by
means of a set of parameters in such a way that it is pos-
sible to directly supervise the learning process. The training
samples are used to tune a fixed number of codebooks or pro-
totypes and the reference set is called the codebooks set or
the prototypes set. Adaptative learning is performed in two
sequential phases: /nitialization and learning. The prototypes
set is initially a subset of the training set and the values of
the prototypes are updated in a iterative learning process.

As editing algorithm we have chosen the multiedit al-
gorithm [Devijver & Kittler, 1982] and as condensing al-
gorithm we have adopted the Hart's condensing al-
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gorithm [Hart, 1968]. As adaptative learning algorithms
we have chosen DSM [Geva & Sitte, 1991] -Decision Sur-
face Mapping- and LVQ-1 [Kohonen, 1990] -Learning Vec-
tor Quantization, version 1-. The values of the para-
meters involved in LVQ-1 learning have been estim-
ated by using two algorithms proposed by the au-
thors [Cortijo & Pérez de la Blanca, 1996b].

Now we can apply the 1-NN classifier using the reference set
learned by these algorithms. We will note by 1-NN (7a)
to the 1-NN classifier that uses 7as as reference set, that
is, the multiedited training set. Following this notation,
if Tmc is the multiedited-condensed training set, then 1-
NN (Tac) is the 1-NN classifier that uses Tarc as reference
set. To apply DSM learning it is required that the training

set to be previously edited [Geva & Sitte, 1991]. We have

used Ty as initial set for DSM learning. Now if Tpsam
is the reference set after DSM learning, 1-NN (Tpswm) is
the 1-NN classifier that uses Tpsas as reference set. Fi-
nally, if Tovg-1 is the reference set after LVQ-1 learning,
1-NN (Tzvo—1) is the 1-NN classifier that uses Tov -1 as
reference set. More details about these algorithms can be
found in [Cortijo & Pérez de la Blanca, 1996a].

2.2 Contextual Classifiers

The contextual classifiers we have tested are based in the
assumption of a Markov random field to model the prior dis-
tribution of the labels in the image. Stochastic models and
random fields (RF) in particular represent accurately inform-
ation a priori on the map. This information can be used in
such a way that the Bayes decision theory can be applied.
A random field is a joint probability distribution imposed on
a set of M random variables L = {L1,..., Ly} represent-
ing objects of interests that imposes statistical dependence in
a spatially meaningful way. In contextual classification each
L; € Q. The spatial dependence can be specified by a global
model such as the Gibbs random field (GRF). A GRF describes
the global propertied of an image in terms of the joint distri-
bution of labels for all pixels [Dubes & Jain, 1989]. A Markov
random field (MRF) is defined in terms of local properties.
It is needed to fix a neighborhood system in which the spa-
tial dependence is relevant. Two neighborhood systems are
mainly used, the first order neighborhood which includes the
four-nearest-spatial-neighbors, and the second order neigh-
borhood which includes the eight-nearest-spatial-neighbors.

Given a set of observations, X = z, and the contextual in-
formation modeled as a MRF, P(L = l), in a Bayesian con-
text the objective is to find the estimator { which maximizes
equation 1, that is, the a posteriori probability of L = [, given
X =z

PX=z|L=l)PL=1I
P(X =z)

PL=1]|X=z)= (1)

This is known as the MAP (maximum a posteriori) method.
The model relating observation z to labeling [ is chosen to
ensure that the posterior distribution of L, given X = z, is
also a MRF. If we require conditional independence of the
observed random variables. given the true labels, it is enough
to ensure that the posterior distribution is also a MRF. Thus
we assume that

M
PX=z|L=0)=][PXi=a|Li=L) (2

=1

If both P(X = z | L = 1) and P(L = ) are known we
can compute L which maximizes the MAP by applying equa-
tion 1. In the practice it is clear that even if M and J are
low it is not possible to calculate directly the MAP as given
in equation 1. To circumvent this problem some alternat-
ives are available to estimate the MAP [Dubes & Jain, 1989).
The first approximation consists in the simulated anneal-
ing algorithm [Geman & Geman, 1984] which find MAP es-
timates for all pixels simultaneously. As the computational
demands of this algorithm are considerable there are two
computationally feasible approximations to the MAP estim-
ate: a) the /ICM algorithm (iterated conditional modes)
and b) the MPM algorithm (maximizer of posterior margin-
als). A detailed discussion on these methods can be found
in [Dubes & Jain, 1989] and references therein. We will cen-
ter our interest in the ICM algorithm [Besag, 1986] which
has been demonstrate to have an excellent trade-off between
the accuracy of the contextual correction and the required
computational effort [Cortijo, 1995].

Another approximation to contextual correction using a MRF
consists in point-to-point contextual correction methods.
They are based in. complex conditioned-probability models
which are extensions of the MAP expression given in equa-
tion 1 by adding an additional term, the contextual cor-
rection factor, into the denominator of the MAP expres-
sion [Saebg et al., 1985]. Assuming conditional independence
of the feature vectors (observations) in a spatial neighbor-
hood two models can be adopted [Saebg et al., 1985]: a) the
Welch and Salter, Haslett’'s model and b) the Owen and
Switzer's model. We have tested both models in this work.

Contextual classifiers accept as input the classifications ob-
tained by the 8 spectral classifiers described in section 2.1,
so. we have performed 24 additional classifications for each
problem.

3 DATA

The data used to test the performance of the classifiers are two
LANDSAT images, landscapes from Greenland, Denmark!.
The first image is a LANDSAT-2 MSS image of the Iga-
liko region. The second is a LANDSAT-5 TM image of
the Ymer @ region. Both images are 512 x 512 pixels in
size. The training sets have been selected by expert geolo-
gists [Conradsen et al., 1987] and their spectral distribution
represent different problematics.

In Igaliko we have five classes to discriminate, the training
set size is 42796 samples and there is a slight overlapping
in the the spectral distribution of the training samples. In
Ymer @ we have twenty classes to discriminate, the train-
ing set size is 12574 samples and there is a high over-
lapping in the spectral distribution of the training samples.
See [Conradsen et al., 1987] for more details.

In this work we have adopted the test sample estimation to
measure the accuracy of the classifications. The training set,
7T is splited into two disjoint sets: 7" (learning set) and 7
(test set). T* has been built by selecting randomly 2/3 of the
available training samples; the remainder are placed into 7°.
We use the learning set to construct the classifier and the test
set for testing. In tables 1 and 2 we show the learning and
test set sizes for each dataset.

1We must thank to the IMM (Denmak University of Technology, Lyn-
gby, Denmark) for providing the LANDSAT images used in this work.
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“ Class ] T l T 1 Sum ”
1 3806 1919 5725
2 7542 3830 | 11372
3 5463 2768 8231
4 2796 1395 4191
5 8834 4443 | 13277

|| Total | 28441 [ 14355 [ 42796 ||

Table 1: Learning and test set size. Igaliko.

!_LClass ] T! ’ Tt T Sum “
1 2464 | 1234 3698
2 843 392 1235
3 413 194 6071
4 196 83 279
5 480 234 714
6 476 233 709
7 178 77 255
8 344 149 493
9 52 21 73
10 187 79 266
11 94 33 127

12 656 313 969
13 144 64 208
14 369 167 536
15 227 96 323
16 192 81 273
17 274 119 393
18 453 220 673
19 271 118 389
20 247 107 354

| Total | 8560 [ 4014 | 12574 |

Table 2: Learning and test set size. Ymer .

4 EXPERIMENTAL RESULTS

In table 3 we show the accuracy of the classifications per-
formed on the igaliko image and in table 4 we show the ac-
curacy of the classifications performed on the Ymer @ image.
We show in the first column the name of the spectral classifier
used to get the initial map, and the accuracy of that classifica-
tion, in the second column. The remainder columns show the
accuracies of the contextual corrections made over the initial
map by using the three models adopted in this paper.

5 DISCUSSION AND CONCLUDING REMARKS

From tables 3 and 4 we must note that the accuracy
of the spectral classifications can be improved -sometimes
drastically- if they are used as input to a contextual classifier
independently of the nature of the spectral classifier. This is
true for the three contextual classifiers tested in this work.

We can conclude that among the contextual classifiers ICM
gives the best results and we must note that the required
computational effort is lower than the others. As the ICM
computational effort is identical for every initial classification,
the global computational cost is determined by the spectral
classification cost.

We must note that in both problems the accuracies got with
the combinations:

Spectral Classifier || Orig. [[ ICM | Welch [ Owen ||

ML 7351 || 81.33 | 79.83 | 80.21
RDA 78.97 || 89.37 | 85.46 | 85.68
CART 80.66 || 92.30 | 86.66 | 86.55
1-NN (T) 74.61 | 86.94 | 85.87 | 85.70
1-NN (Tas) 77.76 || 83.02 | 84.63 | 84.66
1-NN (Tac) 77.08 || 82.83 | 84.83 | 84.85
1-NN (Tosm) 77.50 || 85.32 | 84.12 | 84.52
1-NN (Tzvg-1) | 79.07 || 90.80 | 86.42 | 86.44

Table 3: Accuracy of the classifications. lgaliko.

Spectral Classifier || Orig. [[ ICM | Welch [ Owen

—

ML 61.92 1 91.37 | 85.11 | 85.33
RDA 64.29 || 85.55 | 69.36 | 69.57
CART 62.35 || 95.58 | 86.73 | 87.16
1-NN (7) 78.50 || 97.98 | 86.50 | 87.08
1 NN (7Ta) 65.67 || 90.07 | 82.96 | 83.60

NN (Tazc) 63.23 || 81.09 | 70.12 | 70.35

NN (Tosm) 64.55 || 80.97 | 72.66 | 73.22
1 NN (Tovo-1) 68.18 || 93.64 | 85.55 | 86.41

Table 4: Accuracy of the classifications. Ymer @.

a) CART + ICM, and
b) 1I-NN (Tzvg-1) + ICM

are very high. The computational effort associated to CART
is mainly influenced by the learning step (a function of the
training set size) but we must note that it is a relatively low
cost step. LVQ-1 learning is a quick process and as a addi-
tional advantage we can select the training set size and the
parameters involved [Kohonen, 1990]. As an additional ad-
vantage the values of the parameters involved in the LVQ-1
learning have been automatically estimated by using two al-
gorithms proposed by the authors.

These combinations have also been tested on synthetic very-
high-spectral images [Cortijo, 1995] and the results obtained
do extend these shown here.
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