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ABSTRACT

This paper describes the state of the art in segmentation algorithms of aerial images. Different approaches and object classes are
described and their advantages and limitations are shown. First the advantage of multiple input data (e.g., color, infrared, DEM) and
the information that can be derived from these sources is discussed. Besides sensor data, “synthetic” input images (e.g., using texture
filters) are generated to support the segmentation process. After an optional noise cleaning, primitives are extracted in scale space.
This offers the possibility of selecting an optimal resolution depending on the size and shape of an object. Using this resolution, the
raw segmentation will be stable and conflicts with other object classes will be reduced. Depending on the class of the object the final
extraction has to be selected: Compact artificial objects can be segmented using primitives like areas, lines, or points. Linear objects
like roads are similar but the borders are curves and the size is not limited. Arbitrary areas like meadows, forests, or fields have an
arbitrary border and are mainly defined by their specific texture. Objects like trees or cars have to be treated in a very specific manner.
Finally, different base algorithms for segmentation are discussed: Pixel classification is very simple but lacks the use of context. The
extraction of primitives (egdes, lines, area, points) can be used as a basis for a wide class of objects. Texture analysis can be used for
a rough segmentation of the image. Specialized operations are useful for the extraction of objects like single trees or to support the
interpretation process.

1 INTRODUCTION o Select an optimal strategy for the extraction of every object
class.
Before describing the topics of segmentation we have to discuss
one important question: Is there a known algorithm to extract all Neglecting one of these points will limit the system significantly
objects in aerial images? The answer to this question is no and or at least adds a lot of work for the developer.
will remain no for many years and it is not even clear if there

exists any. Segmentation is not just applying one sophisticated 2 SOURCES

procedure and thus extracting all desired objects. On the other

hand there exist a lot of more or less specialized algorithms.  In the case of aerial image analysis a lot of data sources are

These have to be selected, depending on the classes of objects to  ayailable. Ditfferent sensors which allow a more stable extraction

be extracted, the resolution of the image, and the type of sensor. of a special class of objects can be used. Additional information,
The reason for this is the complexity of an aerial image. There likc.the positign of the sun gfor shadows) or the angle of view (for

are completely different classes of objects, like, buildings, roads, ~ the interpretation of 3D objects), can be used.

rivers, trees, meadows, fields, rocks, ice, hills, cars, poles, bridges,
ships, waves, to name but a few (see figure 1). These classes have
different extensions (e.g., cars and roads), specific or indifferent
shapes (e.g., trucks and forest), uniform or textured surface (e.g.,
roofs and forest), which also depends on the resolution and can
be extracted locally or only globally (e.g., trees versus rivers).
In addition, the appearence of objects changes depending on the
point of view, the weather, the time of day, and the season.

2.1  Color

Most interpretation of aerial images is done based on black and
white pictures. The reason is mainly the availability of these
pictures, and lower cost for digitizing and the required computer
equipment. Many problems can actually be solved using. this
kind of images. Nevertheless, additional channels, like color or
infrared, can ease the task (Ford and McKeown Jr., 1992). Given

On the other hand there is a lot of information about the ob-  the task of interpreting suburb regions, for example, green areas
ject classes. This knowledge can be used in multiple ways: As  are probably lawns, red rectangular areas are candidates for roofs,
the basis for the interpretation, but also to design the segmenta- and small red, yellow or blue rectangular areas on the road are
tion procedure in two directions. Firstly, the selection of sensors probably cars (see figure 2). Using infrared, the extraction of
and procedures operating on their data defines the static (pro- vegetation is even more stable.

cedural) knowledge incorporated in the system. Second, shape,
topology, and radiometry of object classes can be used to control
the segmentation process during runtime (dynamic knowledge).
Constructing a system for a “complete” segmentation of an image
(i.e., with different object classes) the following points have to be

The advantage of color is the simple algorithms for segmenta-
tion which are well known from multispectral analysis in the field
of remote sensing. In some cases even a simple color transforma-
tion like the HSI, HSV, or CIE space, with a successive threshold
suffices. But besides the pixel classification region oriented post

observed: processing must be used to combine groups of pixels to areas.
Morphological operators, like dilation, closing, or binary rank,

e Use all input sources that ease the task. are very useful in this context. At the left of figure 3 left an exam-
ple for a pixel classification can be seen. At the right the modified

¢ Select the optimal resolution for every object class. regions after filling of small holes, applying an opening operation
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Figure 1: Examples for different object classes in aerial images

car

pool in garden lawn with bushes

Figure 2: Objects that can be detected easily using color

with a rectangular mask (diameter 5 pixel), and selection of large
regions is shown.

raw segmentation postprocessed areas

Figure 3. Transformation and selection of regions after pixel
classification

One disadvantage using color is the problem of calibration
because most images are digitized from pictures. In this case the
color features of every object class has to be trained for every film
and every scanner.

2.2 Multi View

The extraction of primitives like edges is often incomplete be-
cause the objects are partly occluded by other objects or due to
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unfavorable illumination. This problem can be reduced by using
more than one view of the objects (Roux and McKeown Jr., 1994).
In the case of aerial images stereo pairs are often available. In
figure 4, for example, a building is shown in two different views.
The edges in'both images are incomplete. But the combination of
both segmentations yields a better interpretation with additional
information of the 3D structure of the building (Haala, 1994).

view 2

view 1

Figure 4: Edges extracted from two different views

2.3 Digital Elevation Model

One completely different type of input data is a digital elevation
model (DEM). It can be generated using manual or automatic
matching of stereo images or by sensors like a laser scanner. A
DEM is useful for the extraction of objects which are higher than
their surroundings (e.g., buildings or trees). A popular operator
for the extraction of high objects is the gray opening. In case of
noisy data the dual rank, which can be seen as an extension of the
gray opening, gives better results (Eckstein and Munkelt, 1995).
The dual rank consists of two successive rank operators. The
first rank operator is applied with the given rank value while the
second one uses the “dual” value (i.e., maximum - rank value).
Therefore the rank value 1 results in a gray opening, and the value
» (maximum) corresponds to a gray closing. In the case of n/2
we get two successive median filters. The rank value thus controls
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the behaviour of the operators. For the extraction of high objects
a rank value a few percents above 1 is used. The increase of the
rank value should be chosen proportional to the amount of noise
pixels.

As an example for the segmentation of a DEM figure 5 shows
a gray image of a hilly landscape with buildings and trees and the
corresponding DEM.

gra image digital elevation model

Figure 5: Hilly landscape with the corresponding DEM

At first the dual rank is applied to the DEM. The result corre-
sponds to the ground without objects (ground DEM). Subtracting
this ground DEM from the original DEM yields the resultin figure
6, which is similar to the top hat of a gray opening. Only those
objects remain which are higher than their surroundings. The
extraction of these objects is now simply a threshold operation,
where the parameter is chosen according to the desired height.
The right image shows the results of the threshold operation. The
detection of the road (left below the intersection) is a bit surpris-
ing, but the road is actually higher than the surrounding meadows.
Another problem in this example are the trees, which are too small
to be significant for the resolution of the DEM.

top hat of dual rank

extracted objects

Figure 6: Normalized DEM and the extracted high objects

Shadows are another class of “objects” that can be extracted
using the DEM. This is useful, because shadows cause a lot of
problems during the interpretation of images since they change
the gray values of objects drastically and add egdes or texture-
like structures. In the image of figure 7, for example, the road
is divided into light and dark areas. The extraction of shadow
pixels cannot simply be done by selecting all dark pixels because
other dark objects may be present. Instead the illumination of the
sun is simulated using the DEM (figure 7 center and right). The
segmentation of this image gives the raw shadows.

Due to the low resolution of the DEM the segmentation has to
be improved in the gray image using the following steps:

1. Elimination of small areas.

2. All those pixels of the remaining areas are selected which
have the intensity of shadows (i.e., their gray values are
inside a given range).

3. These pixels are used as seed areas for regiongrowing: Bor-
der pixels are added as long as the difference between their
gray values and the mean value of the area is below a given
threshold. In addition the number of iterations is limited
according to the maximal error of the DEM.

The result of this post-processing can be seen at the right of figure
8. These areas can be used to support the interpretation (Lin et
al., 1994), for example, to extend small areas of road hypotheses.

raw segmentation

shadows

Figure 8: Segmentation of the illuminated DEM and refinement
using the gray image

3 NOISE CLEANING

In many cases some kind of preprocessing has be applied to the
images before segmentation. One reason is the grain when using
maximum resolution of the film, another is the elimination of
texture which complicates the segmentation. Different theories
and algorithms have been developed to solve these problems.
Some important classes are:

Lowpass Filter: The assumption of these filters is that noise has
a high frequency. The elimination of noise is therefore done
by suppression of high frequencies. Popular representatives
of this class are the average and Gauss filter. These filters are
very fast but the noise suppression is poor, especially using
the average filter, and important image structures like edges
are blured.

Rank Operator: These nonlinear operators take linear combi-
nations of the sorted values of all the neighborhood pixels.
Conceptually we can visualize the operator as sorting the
gray values from the smallest to the largest and taking a lin-
ear combination of these sorted values. The most common
rank operator for noise cleaning is the median. The median
suppresses small lines and points but edges are preserved.
Other types of rank operators have been proposed, like vari-
able size and shape of the neighborhood depending on the
noise, or the weighted-median filter which adds gray values
more than once (depending on the weight) to the sorting list.
Further information can be found in (Haralick and Shapiro,
1992).

Wiener Filter: Likeinverse and pseudoinversefilters the Wiener
filter is used in the field of image restoration. The Wiener
filter, which models noise explicitly, makes use of the fol-
lowing model assumptions:
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gray image

DEM

illuminated DEM

Figure 7: Gray image with corresponding illuminated DEM

The image distortions can be modelled by a linear
system.

The original image and the observed image can be
considered as stationary random.

There is no correlation between noise and image.

The noise in the amplitude only (not in the phase) of
the Fourier spectrum.

The implementation usually is done via convolution in the
Fourier domain. To build the impulse response of the Wiener
filter, the spatially invariant impulse response of the image
distortion, and the power spectral density of the original
image and the noise are needed. Wiener filtering of an
observed image produces an estimation of the undistorted
original image that is optimal in the sense of a minimal mean
square error between the estimated and original image.

Others: Hysteresis smoothing can remove minor fluctuations
while preserving the structure of all major transients. The
anisotrope diffusion is an iterative, anisotrope smoothing
operation on the basis of physical diffusion. Low edges are
suppressed while step slopes remain. The sigma filter is an
average filter with gray values in the neighborhood that are
close in value to the center value. Thus we have a simple
local adaption to noise or texture.

In general it is very difficult to decide which of the operators
mentioned above has to be selected for a given task because
no theory exists which allows a comparison. To have a short
impression of the effects one example is given. In figure 9 a roof
with noise due the grain of the film and some texture and the
elimination using a Gauss filter and the anisotrope diffusion (left
to right) can be seen. In this case it is obvious that the result of
the anisotrope diffusion is better, because edges are preserved and
noise is eliminated.

4 OPTIMAL RESOLUTION

For the extraction of a class of objects one has to select the res-
olution depending on its shape and radiometric properties. If
the resolution is too high the details complicate the segmentation
and interpretation. The advantage of a lower resolution is the
reduced number of pixels (runtime) and the reduced size of the
objects (locality and generalization). If the resolution is too low
the objects cannot be extracted at all. In german there is a proverb
which explaines the problem: “You can’t see the forest due to
many trees.” If you want to extract a forest there is no need to
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see the leaves. The selection of the optimal resolution simplifies
the problem significantly. Roads, for example, can be detected
as lines in a lower resolution (Fischler et al., 1981), (Aviad and
Carnine Jr, 1992), (Barzohar and Cooper, 1993), (Barzohar and
Cooper, 1995), (Berthod and Serendero, 1988). In figure 10
a house in high resolution (one pixel corresponds to 25cm) is
shown. Applying a Sobel filter yields many edges due to the tex-
ture of the tiles. Using a lower resolution (one pixel corresponds
to =2 0.75 m) results in the edges of the roof.

Looking at the selection of the correct resolution more closely,
one finds out that a single resolution does not suffice in many
cases: A higher resolution is needed to refine the segmentation.

1. There is an optimal resolution to extract the raw shape of an
object called initial resolurion.

2. In many cases a higher resolution (refined resolution) is
needed to extract the exact shape of the object and to distin-
guish it from other similar looking objects.

This leeds to a multi resolution approach to segmentation: Seg-
mentation starts with the initial resolution. The results of this
step are verified and improved using the next refined resolution.
If necessary, the process is continued with further refined resolu-
tions (Heipke et al., 1995). In figure 11 the extraction of a road in
the initial resolution can be seen. Here roads are extracted as lines
of a given width. In the refined resolution edges are extracted.
These results are used for a precise detection of the road bound-
aries and the elimination of false candidates. For final results a
further refinement is needed to extract road marks.

refined twice refined

inital

Figure 11: Extraction of primitives of roads in different resolu-
tions (three different scenes)

The resolution hierarchy might be invalid in some case. This
can be illustrated by the roads in figure 12. The gray value of the
asphalt is simular to its surrounding. Therefore the road cannot
be extracted as a line in low resolution. The road is defined only
by the marks found in the refined resolution. In this case the
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building original image

Gauss anisotrope diffusion

Figure 9: Part of an image with noise and some texture and the results of different filters for noise reduction

texture of tiles on the roof

low resolution

Figure 10: Edge detection in high and low resolution

interpretation process is very difficult because there is a very low
hypotheses for a road because it could not be found in the initial
resolution.

Figure 12: Roads that can be extracted only in high resolution

More information on scale space and pyramids can be found in
(Gauch and Pizer, 1993), (Lindeberg, 1991), (Lindeberg, 1993).

5 OBJECT CLASSES

As we have seenin figure 1 there are alot of different object classes
in an aerial image. Ideally, one segmentation procedure should be
used to extract primitives which are sufficient to recognize objects
of all classes. Unfortunately, this is not the case. As we will see
in the following subsection there exist specific procedures for a
broader class of objects which can be processed in a similar way.
But no procedure for all classes exists.

5.1 Compact Artifical Objects

Examples for this class are buildings, cars, trucks, and ships. All
these objects are composed of more or less homogeneous areas
with polyhydral borders. Therefore, models can be contructed us-
ing descriptions of areas, lines, and points together with attributes
(e.g., color or size) and relations between the primitives. The
interpretation of objects is done by extracting similar primitives
(area, edges, junctions) and matching these with the model after
an optional grouping (Dolan and Weiss, 1989), (Lin et al., 1994),
(Lu and Aggarwal, 1992), (Mohan and Nevatia, 1987), (Mohan
and Nevatia, 1992), (Sarkar and Boyer, 1993). In figure 13 a
building with extracted edges and an approximation of the con-
tours can be seen. To ease the interpretation the lines are grouped

raw contours

polygons

Figure 13: Extraction of edges and polygon approximation

(figure 14): In a first step all parallel lines are selected given a
maximal distance and a maximal error for the angle. From these
all those pairs are selected which enclose homogenous areas.
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pzirallel lies

selected parallels

Figure 14: Selection of parallel lines enclosing areas with contant
gray values

The main structure of this class of objects can be extracted
using one resolution. This is choosen in such a manner that areas
have homogenous gray values (Forstner, 1995). To distinguish
(long) buildings from (short) roads a higher resolution or a DEM
is needed.

5.2 Linear objects

Typical representatives are roads, rivers, and railroads (Huertas
et al., 1987), (Heipke et al., 1995), (Jedynak and Rozé, 1995),
(Heipke et al., 1994), (Ilg, 1990), (Li et al., 1992), (Lipari et al.,
1989), (McKeown Jr. and Denlinger, 1988), (Venkateswar and
Chellappa, 1992), (Vosselman and de Knecht, 1995), (Zerubia
and Merlet, 1993). Roads are similar to the objects above, but the
borders are curves and the size (length) is not limited. In addition,
lines (in contrast to edges) are needed for the interpretation. As
we have seen in section 4 roads are extracted using different levels
of resolution. The initial resolution is choosen in such a way that
roads have a width of a few pixels. In the highest resolution road
marks have a similar width. Because there are different types of
roads with typical widths the initial resolution has be to selected
appropriately.

The type of model for roads is different to that for buildings.
This is because roads are unbound in principle and do not have
a fixed shape. Therefore, the interpretation process is mainly
bottom up and the model is used for tasks like grouping and se-
lection of areas which are road candidates and not for matching
of primitves with a model of a road. An example of this group-
ing process can be seen in figure 15. The first picture shows
the initial primitives which are grouped (parallel, colinear), se-
lected (homogenity) and combined with the results of the initial
resolution.

Linear objects which are more complicated are brooks or rail-
roads: Brooks and rivers often have badly defined banks. Rail-
roads are defined by a combination of lines and a specific texture.
For these objects strategies used for roads and arbitrary areas have
to be combined.

5.3 Arbitrary areas

Areas like meadows, forests, or fields define another class. They
have an arbitrary border and are defined by their specific gray
value, color, and texture. In this case it is very difficult to extract
any type of primitives. Direct texture analysis is used instead
(see section 6.3). A first example can be seen in figure 16. The
left picture shows a zoomed part with two fields with different
texture. These textures can be distinguished very easily due to
the horizontal structure of the left field.

In figure 17 two examples with forest can be seen. The left
picture shows the selection of areas with the texture of firs. Look-
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different textures classification

Figure 16: Separation of areas with different textures
ing at the road at the right side the invariance with respect to

illumination can be seen. In the right picture deciduous trees are
selected.

forest deciduous trees

Figure 17: Selection of regions with with different type of textures

A model for this class of objects is mainly implicit (e.g., fre-
quency or color distribution). Only some features, like minimal
size, width, or typical shapes (fields), can be used.

5.4 Special Objects

Objects like trees or persons have to be treated in a very specific
manner. A tree, for example, has a complex structure which
involves texture as well as shape. In the case of deciduous trees it
is very difficult to extract their boundary, especially if they stand
close together. As we saw in figure 17 it is possible to detect
the texture of deciduous trees. Figure 18 shows two extreme
examples: The single trees in the left image can be extracted
using the gray values and shape. In addition, 3D information, like
shadows or height, is useful. But there is no procedure known to
separate the trees in the right image.

A more simple class of trees are firs. In figure 19 one tree
and parts of the neighboring trees can be seen. Looking at the
3D plot of the gray values the complex structure of the branches
can be seen. One approach to segment these trees is base on the
following assumptions (Haenel and Eckstein, 1986):

¢ The top of the tree is brighter than the outer parts.
e All trees a separated by dark areas (shadows).
e The visible (bright) part of the tree has some texture.

Smoothing the image with a Gauss filter the influence of the

tornratad ag digtinet hright
texture is eliminated and trees can be i mierpreted as distinct orignt

blobs. The blobs are segmented using the watershed algorithm
(inverse gray values). The boundaries are now along the darkest
part of the shadows. To extract the visible part of the trees a local
threshold operation is used.
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Figure 15: Grouping process for road extraction

watersheds local threshold

Figure 19: Segmentation of fir trees by calculation of watersheds in a smoothed image

single trees

dense forest

Figure 18: Different forms of deciduous trees

6 BASIC SEGMENTATION ALGORITHMS

A variety of algorithms are available as building blocks for the
construction of a complete segmentation procedure. Depending
on the object class to be extracted, one or more of them is needed.

6.1 Pixel Classification

This is the well known class of point operations, mainly applied
to multichannel images in the field of remote sensing. In the case
of aerial images the algorithms can be used with color or infrared.
As we will see in section 6.3 synthetic channels can the generated
with the help of texture filters. The problem of pixel classification
is the lack of context. Some kind of context can be added by using
resolution pyramids as additional channels or by post processing
the classified pixels (closing, dilation, etc.).

6.2 Primitives

The most polular approach for the extracton of objects is to find
edges. Different operators have been proposed. Besides simple
filters like Sobel, Kirsch, or Prewitt more sophisticated have been
developed: (Shen and Castan, 1992), (Canny, 1983), (Canny,
1986), (Lanser and Eckstein, 1992). Edge detection assumes that
an object consists of one or more constant areas. In general it
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is not possible to extract closed contours, so the edges are used
as primitives. In many cases they are approximated to polygons.
Junctions and points of high curvature are derived as additional
primitives. Using an edge detector, blobs, defined as areas of low
gradient, can be extacted by a threshold operation with optional
postprocessing e.g. opening.

PN

gray ia

polygons

Figure 20: Two types of primitives: blobs and polygons

A more general approach is given by (Forstner, 1994). Here
different types of primitives are extracted simultaneously:

e Homogeneous areas
e Edges and lines

e Points (boundary points of high curvature or junctions)

These features are well defined in the case of artifical objects like
buildings (see section 5.1). The approach is based on the average
squared gradient defined by

2
I\ - Go’ * 9z 9z 9y 1
g ( Jy9= g; @

where G, is symmetric Gaussian function with standard deviation
. The extraction of primitives is composed of the following steps:

1. Estimation of noise characteristics.

2. Information preserving restoration using a Wiener filter (see
section 3).
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Feature detection (blobs, lines, points) and feature descrim-
ination (junctions, symmetric features, edges, and lines)

Feature localization with subpixel accuracy, where features
are expected to lie inside the classified pixels.

In (Steger, 1996) lines are extracted as primitives. The image %
regarded as a function ¢(z, y) and lines are detected as ridges and
ravines in this function by locally approximating the image func-
tion by its second order Taylor polynomial (not the facet model
like in (Busch, 1994)). The coefficients of the Taylor polynomial
are determined by convolving the image with the derivatives of
a Gaussian smoothing kernel. In contrast to (Forstner, 1994) the

Hessian matrix

is used to extract the local features.

Curvilinear structures in 2D are modeled as curves s(¢) that
exhibit a characteristic 1D line profile in the direction perpen-
dicular to the line, i.e., perpendicular to s'(¢). Let this direction
be n(t). This means that the first directional derivative in the
direction n(t) should vanish and the second directional derivative
should be of large absolute value. To compute the direction of
the line locally for each image point the partial derivatives gz, gy,
gaz, Yzy, and gyy of the image are estimated. This is done by
convolving the image with the appropriate 2D Gaussian kernels.
The diréction in which the second directional derivative of g(z, y)
takes on its maximum absolute value is used as the direction n(t).
This direction is determined by calculating the eigenvalues and
eigenvectors of the Hessian matrix.

Jaz
Jzy

Gy
Jyy

@

The use of the Taylor polynomial leads to a single response of
the filter to each line. Furthermore, the line position are deter-
mined with sub-pixel accuracy and the algorithm scales to lines
of arbitrary width.

original image extracted lines

Figure 21: Extraction of lines using the appraoch of Steger

Other articles on the extraction of lines are: (Blaszka and
Deriche, 1994a), (Gruen and Agouris, 1994), (Koller et al., 1994),
(Koller et al., 1995), (Monga et al., 1995). Further articles on the
extraction of image primitives: (Reynolds and Beveridge, 1987),
(Blaszka and Deriche, 1994b), (Filbois and Gemmerlé, 1994).

6.3 Texture

A great variety of operators for texture segmentation have been
developed. The first class analyses the local frequency distribution

A tha id that tavh h oenacif Aty
based on the idea that Every teXiure nas a speciiic specirum.

next class extracts local features (texture elements) by which the
global texture can be defined. Other approaches use stochastic
models for segmentation (Geman and Geman, 1984), (Kato et al.,
1991), (Nguyen and Cohen, 1993). Finally, local features like
the co occurrence matrix are used to describe textures (LLohmann,
1994).

The
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The texture analysis using spectral decomposition will be ex-
plained in more detail. The idea is very simple: a set of » filters
has to be defined which extracts the amount of a specific frequency
range for the neighborhood of every pixel. Thus we have a vector
t(g) of length n desribing the pixel g and its neighborhood with
n values. This vector can be used as input for n-dimensional
(un)-supervised classification (see section 6.1).

For the implementation of this approach appropriate filters have
to be found. A simple set of filters was proposed by (Laws, 1980).
He defined 25 filters f;; of size 5 X 5 constructed from vectors
v € {l,e,s,7, w} by convolution: f;; = v * v;.

! = (1 46 4 1)
e = (-1 =2 0 2 1)
s = (=1 0 2 0 -1)
r = (1 -4 6 —4 1)
w = (-1 2 0 -2 1)

Another popular set are the Gabor filters (Shao and Forstner,
1994). They are defined in frequency space and have some nice
features: They have orientation selectivity, multiscale property,
linear phase and good localization both in spatial and frequency
domains.

As a last example for texture filters simple gauss shaped filters
can be used. They are invariant with respect to rotation and are
defined via center frequency and the deviation. Typical filters of
all three classes can be found in figure 22.

An example for the application of two laws filters is given in
figure 23. At first the filters fe. and f,; are calculated from the
gray image. The so called texture energy is calculated using a
lowpass filter (e.g., average) with a large filtermask to generalize
the texture. In this case a median filter with circular mask (diam-
eter 50 pixel) was used. These texture energy images can be used
as input to pixel classification.

6.4 Specialized Operations

Besides more general segmentation procedures like those of sec-
tion 6.2 and 6.3 are the specialized filters which emphasize special
structures in a gray image like points, lines, or corners.

The corner resonce operator, for example, is defined by (Harris
and Stephans, 1988):

c

g = Ga*gi'Gd*gZ"Gc*(.‘]mgy)" 3

k(Go‘*gi +Go*g§)2

where g is the gray value and G ist the Gaussian filter with
deviation ¢. The corner response function is invariant with respect
to rotation. A typical value for the factor & is 0.04. In this case
corners result in a positive g© while edges have negative values.
An extension of the corner response function is given in formula

.
Go*(g2)  Go*(9y) — Gox (g2g5) — @

g ==
k(Go# (92)* + Go * (99)%)”
o = ViE+a

Here the filter is applied to the gradient and not to the original
gray values. The response is maximal for highly curved edges.
In figure 24 two examples are given. All maximums of the filter
above a given threshold are marked with a cross. Most of the
dominant points of the buildings are found as well as comers
caused by the shadows.

Besidesthe cornerresponsefilter a lot of other filters for corners
or “promiment” points have been defined. Some of these can
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Figure 22: Frequency response of different texture filter classes
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image 1 image 2

Figure 24: Result of extended comner response filter

be found in: (Dreschler, 1981), (Deriche and Giraudon, 1993),
(Tabbone, 1994), (Forstner and Giilch, 1987). In (Rohr, 1993) a
comparison of different operators is given.

As a second example for specialized operators the extraction
of lines will be discussed. The aim is to construct a filter, whose
emphasizes linear structures of a given width and suppresses struc-
tures beeing smaller or wider. We define the frequency f of aline
as the frequency of the sinus wave which half period is equal
to the the width of the line. Given the minimum and maximum
width of the line and thus fi,az and frmin we define a bandpass
filter with the following properties:

1. Suppression of frequencies below frnin.

2. Suppression of frequencies above fraz.

The frequency fima= canbe choosen higher if sharper edges of the
lines are required. In figure 25 an example of such a filter for the
extraction of roads can be seen. fmaz has been choosen higher,
so the edges of the road are fairly well defined. The extration of
the road is simply a threshold operation. Besides the roads some

roofs of similar width are selected. These have to be eliminated
using context information.

original image » bandpass filter

Figure 25: Emphasizing linear structures of a given with

7 CONCLUSION

Is was shown that the segmentation of aerial images needs task
oriented segmentation procedures. Depending on the class of ob-
jects, appropriate resolutions and procedures have to be selected.
This selection has to be done according to the object model. The
segmentation becomes more stable if additional data, like color
or a DEM, i, iSS used. One open question is how to merge
segmentation results when processing different object classes si-
multaneously.

All examples of this paper were programmed with the im-
age analysis system HORUS using the interactive user inter-
face HORUSDevelop (Eckstein and Steger, 1996). The im-
age examples have mainly been taken from the ETH-Ziirich
and the ISPRS testset (Fritsch et al, 1994). All images
are available via ftp from: ftp://ftp.informatik.tu-
muenchen.de/pub/rec/images/space/
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