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ABSTRACT:

The mathematical modeling of dynamic and time-dependant perturbations affecting space sensors is a common practice in
photogrammetry. This modeling is usually done through the fitting of parametric or interpolative models. However the extension of
the model and the addition of parameters may lead to unstable solution due to high correlations between parameters. The
identification of correlated parameters to take corrective measures is often based on the analysis of the correlation matrix. The
correlation matrix shows however, only correlations pairewise and does not give any indication on functional groupings.

In this paper, the variance decomposition based on singular value decomposition is presented. In this method the number of small
singular values indicates the number of near depndencies and parameters involved in these are identified as those that have more
than 50% of their variances associated with the same small singular value.

A sase studey based on in-flight camera calibration was conducted with simulated and real data, and showed the efficiency of the

method in dealing with fuctional groupings of the paramameters.

1. INTRODUCTION

The effects of external conditions and errors affecting the
system constitute a limiting factor on the attainable accuracy in
computational photogrammetry. The mathematical modeling of
such phenomena are a common practice so as to take into
accounts these effects. This modeling is usually done by the
fitting of:

- a parameteric model based on the geometrical or
physical characteristics of the phenomenon.

- an interpolative model represented by a polynomial.

Modification of existing models through their extension and
addition of parameters to account for these perturbation may
lead to an unstable solution due to the correlation between
parameters.

For almost all least square users, the identification of the
correlated parameters is based on the analysis of the correlation
matrix.  Hence, in the case of additional parameters, the
decision of rejecting and deleting parameters is essentially
based on the magnitude of the correlation coefficient. In this
respect, some authors recommended 0.90 as a rejection standard
(Grun, 1980), while others suggested 0.85 (Faig and Shih,
1988).

However, the alternative of rejecting and deleting parameters on
the grounds of their significance and stability is not alwys
justified. In fact, in some applications the physical significance
of the parameter may be of great importance to the modeling;
besides this, the rejection decision may not be fully reliable due
to the fact that hypothesis testing may be rendered inconclusive
because of the high variances inducued by the ill-conditioning.
On the other hand, the correlation matrix shows only
correlations between parameter pairs and does not give any
indication on fuctional groupings where more than two
parameters are simultaneously invioved in a correlation. In
this respect, experience has shown that, it is possible for three
or more parameters to be correlated when taken together, but no

two of these taken in pairs are highly correlated. Moreover,
when the system is ill-conditioned, high correlation coefficients
may be indicative of correlated parameters, but the absence of
high correlation coefficients cannot be considered as evidence
of no problen.

To overcome the drawbacks of the correlation matrix
mentioned above, we present in this paper a method based on
the singular value decomposition and that deals efficiently with
multiple correlations or functinal groupings of parameters.

2. BACKGROUND ON VARIANCE DECOMPOSITION

2.1 Singular Value Decomposition

The singular value decomposition is a concept closely related to
the eigensystem , but that applies directly to the design matrix

A insted of the normal matrix (ATA) .

Hence, if A isan (mxn) rectangular matrix, the singular values
A; of A are the positive square roots of the eigenvalues of the

square matrix (ATA) of order n (Lascaux and Theodor, 1986).

In fact, for any arbitrary (mxn) matrix A, there exists an unitary
(mxn) matrix U and an unitary (nxn) matrix V such that:

A=UpVvT 2.1
with D a diagonal matrix of the form:
D 0
D= [ 11 ] (2.2)
0 0
and :
Dyq = diagonal(Aq,Aq,.u.0h ;) (2.22)
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sAr
r is its rank.

are the nonvanishing singular values of A, and

It is known that, when some singular values are exactly zeros,
the matrix A is not full rank; in this case we say that A contains
exact linear dependencies whose number is exactly equal to the
number of null singular values.

Therefore, since a null singular value is an indication of exact
linear dependency, Kendall and Silvey (Belsley et al, 1980)
have extended this idea to say that, the existence of a small
singular value is indicative of a near dependency; which means
that, there will be as many near dependencies as there are small
singular values.

2.2 Condition Number and Condition Indices

The condition number is one of the most popular stability
indicators. The condition number is defined as:

i

or in terms of the singular value decomposition of A asthe
ratio of the largest to the smallest singular values as:

K(A) =|A] 2.3)

= M max

A 2.4)

min

In a similar fashion, the i™ condition index can be defined as
the ratio of the largest singular value to the it singular value :

Kl = }‘max
A
Hence there will be as many condition indices as there are

nonzero singular values.

2.5)

2.3 Variance-Decomposition Proportions

It is well known to all least square users that the variance-
covariance matrix of the adjusted parameters (if we assume a
unit weight matrix P =1, and unit a priori variance of unit

weight 0(2, =1)is given by:

Ty = (ATA)™! (2.6)

Expressing this in terms of the singular values of the design
matrix A asin Eq.(2.1) we get:

T, = (VDUTUDV")™
= VD *vT

2.7)

Therefore, the variance of the ith parameter X; may be written

as:
r 2

2 _ Vij
%= 2Gr
]

i=1

2.8)

which means that, the variance of any parameter decomposes
into a sum of components, each of which is associated with one

of the singular values A i For instance, the component of the
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variance of the i™ parameter associated with the jth singular
value is given by:

2

_ Vi

T2

Aj

2

X

(c%,); (2.9)

The proportion of the variance the parameter X; associated

with the jth singular value is given as:

(o2);
2

()'xi

(Pi)j = (2.10)

The decomposition of the variances of all parameters with
respect to all singular values gives what is called the variance-
decomposition proportions matrix.

2.4 Identification of Correlated Parameters

Since a null singular value is an indication of an exact linear
dependency, a small singular value is indicative of a near
dependency. Therefore, there will be as many near
dependencies as there are small singular values.

On the other hand, since in Equation(2.9) A;j's appear in the

denominator of the expression of the components of the
variance, components associated with small singular values will
be large compared to the other components; which will lead to
high proportions.

It follows that , two or more parameters can be said to be
involved in a near dependeny when a high proportion of their
variances is associated with the same small singular value (or
same high condition index).

Hence, the method of variance decomposition will enable
identify:

The number of near dependencies (multiple
correlation) affecting the system as the number of high
condition indices (small singular values).

The parameters involved in these multiple
correlations as those that have a large proportion of their
variances associated with the same high condition indiex.

It remains however to decide on what should be considered as a
large proportion of the variance and what should be considered
as high condition index.

In this matter no standard exists on which to base this decision.
Concerning the threshold for the proportion of the variance,
Belsley et al (1980) considered a proportion to be large when it
accounts for more than 50% of the variance of a parameter.
The threshold for the condition index is however more
complicated, because what can be considered a high condition
index inducing ill-conditioning for a particular application ,
may not be a source of ill-conditioning for other type of
applications.

Hence in the testing that follows, all condition indices will be
considered until a conclusion can be reached during the testing
on threshold to consider as harmfull.
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3. CASE STUDY: IN-FLIGHT CAMERA CALIBRATION

In-flight camera calibration is a typical and an oldfashioned
problem where the model is extended to account for
perturbations.

The model used is the well-known collinearity condition
equations extended to include variations in the interior
orientation parameters expressed as:

F(x) = (x—x,) + (x= %, )(K, 1 +K,r + K, +...)+

{PI(F2 +2x )+ 2P,§§}{1 + P3;2+...} ~eX)/ =0

(2.11)

-2 —4 —6
F(y)=(-y)+(y-y)E;r +K,r +K;r +..)+
*{2P1;§+ PZ(FZ+2§’)H1+ P3;2+...}—-CY/Z,=0
where:
X'=ap (X=X )+ap(Y-Y)+a(Z-Z,)
Y'=a33(X=Xo)+an(Y-Y,)+ay(Z-7Z,) (2.11a)
Z'=a3(X-X,)+an(Y-Y,)+azi(Z-Z,)
— ...2 -2 - —
r=\fx +Y SX=X-XiY=Y-Y, (2.11b)

with:
ayy,4y5,...a33 : elements of the rotation matrix of the gimbal

angles defining the orientation between the survey and photo
coordinate systems.
X,Y,Z : Object point coordinates in the survey system.

Xos Yy, Z, : Exposure station coordinates in the survey system.
X,y : Observed image coordinates in the fiducial system.

Xp,»¥p : Principal point coordinates in the fiducial system.

¢ : Camera constant.

K,,K,,K3: Polynomial coefficients of symmetric radial
distortion.

Py, P,,P;: Polynomial coefficients of decentring distortion.

In this model , parameters of interior orientation are to be
recovered in a simultaneous least squares adjustment along
with exterior orientation parameters and survey coordinates.
the problem of highly correlated parameters has been
demonstrated by many authors (Pogorelov and Popova, 1975;
Mrchant, 1974; Salmanpera, 1974; Kupfer, 1985; Brown
1969). Most often, the identification of correlated parameters
has been based on the correlation matrix or the analysis of
partial derivatives of the function with respect to each of the
parameters.

In this paper the procedure of variance decomposition is applied
to data pertaining to in-flight camera calibration.

3.1 Description of the Data

To allow for extensive testing of the method a synthetic data
was generated mathematically. Since in camera calibrartion the
resulting matrix is large, to keep the computations within
reasonable limits, only four (4) photos were considered. Object
space coordinates were generated for 25'ground control points.

Exposure station coordinates and attitudes were assumed,
allowing for the computation of the image coordinates with a
focal length of 152.25 mm (Ettarid, 1992). Several factors such
as elevation differences on ground control, use of convergent
photos and a priori information on parameters were considered
in the testing.

To confirm the validity of the procedure and the conclusion
drawn from simulations, the testing of the method was
conducted also with real data. The configuration consisted of 4
photos, two of which were vertical and the two others were
convergent. The convergent photos were taken by modification
of the flight scheme, using "the standard coordinted turn at 45
degrees" as described in Tudhope (1988).

3.2 Discussion of the Results

The variance decomposition method was applied to the
resulting design matrix. Different cases were considered such
as the use of convergent photos, the influence of elevation
differences on ground control and a priori information on
parameters. As the resulting variance decomposition
proportions matrices are very large, only extracts of the
condition indices and parameters associated with are presented
here; the reader interested in the complete set of results may
refer to Ettarid (1992). Correlated parameters are identified as
those having more than 50% of their variances associated with
the same high condition index.

* The variance decomposition applied to the design matrix
resulting from calibration over a flat terrain showed that the

high condition index is 58x10'%(Table 3.1), induced by a
multiple correlation involving the parameters P,andw rotations,
with 100% of the variance of P, associated with this index.

Parameters K;,K,andK; are involved in asecond corrlation

associated with a condition index of magnitude 11x107 . The
other correlated parameters identified are respectively the

camera constant ¢ and Z,'s, Xp and Xo's, and Yp and Y,'s.
The involvement of P,in a stronger correlation with Omega
rotations has masked its involvement with y,in a weaker

correlation as we will see later. Similarly the involvement of
xp with X, 's has masked the correlation between x,, and Py .

Table 3.1. Correlated Parameters in the Case of Calibration
Over Flat Terrain

Condition Correlated Prameters

Indices (Variance-Decomposition Proportions)
5.8x1010 P, (1.00) o (.74) ©, (.78) w3 (.72) w4 (.60)
1.1x107 K;(.87) K;(96) K;(.99)
8.8x10° C (91) Zi(91) Z,(91) Z3(91) Z,(91)
2.8x107 Xp(96) X, (96) X, (95) X, (97) X, (99)
23x103 ¥p(76) Y, (71) Y, (72) Y, (70) Y, (69)

The introduction of orthogonal Kappa rotations on successive
exposures has no effect on correlated parameters in the case of
calibration over flat terrain.

183

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996




On the contrary, the use of convergent photos (photos 1 and 2)
resulted in the elimination of the correlation between y, and
Y,'s and alleviated the correlation between camera constant ¢
and Z,'s of the convergent photos (Table 3.2); but involved on
the other hand « rotations in the near dependency involving
P,, y, and o rotations.

Table 3.2. Correlated Parameters in the Case of Calibration
over Flat Terrain with Convergent Photos.

constraints on exterior orientation parameters. Prior
information here is introduced as appropriate weighting of the
unknown parameters leading to what is generally called indirect
observations or quasi-observations.

Introduction however of constraints on the interior orientation

parameters ( ¢, x, and y, ) succeded in isolating y, from the

near dependency involving P, and Omega rotations; it remains
only two near dependencies as in Table 3.5.

Table 3.5. Correlated Parameters in the Case of

Calibration with Elevation Differences on Ground
Control, Orthogonal Kappa, Convergent Photos and
Constraints on Interior Orientation Parameters.

Condition Correlated Prameters

Indices (Variance-Decomposition Proportions)
4.9x1010 | P2 (1.00)y, (:63),(.61)x, (.64) ®3 (.72) w4 (.60)
1.2x107 Ki(.87) K,(97) K;5(.99)

36x10% | € (85  Zo,(60) Zo,(64) Zo,(85) Zo,(85)
2 5x10% x,(:65) X0,(.90) Xo0,(90) ¢,(.65) ¢,(.60)

Condition Correlated Prameters

Indices (Variance-Decomposition Proportions)
8.0x10° P, (1.00) ,(.36) o, (.61) o3 (.68) w,(.68)
8.3x10° Ki(.76) K,(.94) K;5(.98)

* In the case of camera calibration with elevation differences
on ground control (Dh/H = 30%), the variance decomposition

showed that the highest condition index (3.7x10'")is still
induced by the correlation involving P,, y, and Omega

rotations (Table 3.3).
between camera constant ¢ and Z_'s;

This also has alleviated the correlation
but as ¢ is freed it

becomes part of the correlation involving K,, K, and K,.

Table 3.3. Correlated Parameters in the Case of
Calibration with Elevation Differences on Ground

Control.
Condition Correlated Prameters
Indices (Variance-Decomposition Proportions)
3.7x1010 | P2 (1.00)y, (.69) @, (.88) @, (.87) w3 (.90) @4 (.90)
Lixio? | €31 Ki(86) K, (.95) Kj3(97)
30x10% | B (8 0,(7D) 9,(52) 9,(7D) ¢,(.64)
11x10t C(30) Zo,(87) Z0,(88) Zo,(.86) Zo,(84)

The introduction of orthogonal Kappa rotations on exposures
and the use of convergent photos has eliminated or alleviated
all the correlations except those involving respectively K,

K, and K;, and P, and y, (Table 3.4).

Table 3.4. Correlated Parameters in the Case of
Calibration with Elevation Differences on Ground
Control, Orthogonal Kappa and Convergent Photos..

Condition Correlated Prameters

Indices (Variance-Decomposition Proportions)
1ix1010 | B2 (1.00) y, (7D ©,(.62) @, (79) @3 (.82) 04 (.83)
1.0x107 Ki(83) K,(.96) K;3(.99)
8.3x103 C(20) Zo,(50) Zo,(.36) Z0,(.68) Zo,(.72)

* In the case of calibration with elevation differences on
ground control, the introduction of prior information on
exterior orientation parameters did not bring any change to the
existing pattern of correlations. It seems that elevation
differnces on control encompasses the information brought by

* The application of variance decomposition to the design
matrix resulting from the calibration based on real data showed
the same pattern of near dependencies and the same correlated
parameters as those found with the simulated data.

4. CONCLUSION

The testing done with simulated and real data for different
geometric  configurations indicated that the variance
decomposition proportions method is a valuable analytical tool
for the identification of parameters involved in functional
groupings.

In the case of non linear models, which is usually the case in
photogrammetry, the design matrix is changing because it has
to be updated after each iteration. In order to reduce the
computational burden, the variance decomposition needs to be
applied only to the initial design matrix if realistic first
approximations are introduced as initial values.

In the testing all condition indices were considered; but the
results of the calibration showed that estimates of parameters
involved in near dependencies associated with condition indices

smaller than 10 are not degraded.

On the other hand, Belsley et al (1980) advocated the scaling of
the design matrix to a unit column norm before applying the
variance decomposition. In this paper the variance
decomposition was applied to an unscaled design matrix
because the scaling can undo ill-conditioning associated with
features such as mixed units, which may mask the real
correlations between parameters.
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