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ABSTRACT

Extracting significant features is essential for processing and transmission of vast volume of hyper-dimensional data.
Conventional ways of extracting features are not always satisfactory for this kind of data in terms of optimality and
computation time. Here we present a successive feature extraction method designed for significance-weighted supervised
classification. After all the data are orthogonalized and reduced by principal component analysis, a set of appropriate
features for prescribed purpose is extracted as linear combinations of the reduced components. We applied this method
to 411 dimensional hyperspectral data obtained by a ground-based imaging spectrometer. The data were obtained from
tree leaves of five categories, soil, stone and concrete. Features were successively extracted, and they were found to
yield more than several percents higher accuracy for the classification of prescribed classes than a conventional method.
We applied the results of feature extraction for evaluating the performance of current sensors. We used the accuracy of
classification as an index of performance for a specific purpose.

1. INTRODUCTION

Recently the dimension of remotely sensed data becomes
higher and higher because of higher spectral resolution,
increasing number of sensors, and multi-temporal obser-
vations. Airborne Visible Infrared Imaging Spectrometer
(AVIRIS), for example, has 224 spectral bands in the 0.4-
2.5um region (Vane, 1988). In order to efficiently obtain
necessary information from these hyper-dimensional data,
or in order to transmit the data through a communication
channel, the quantity of data must be reduced. This can
be achieved by extracting significant features.

Here we propose a feature extraction method designed for
significance-weighted supervised classification and present
its application for evaluating the performance of sensors.
The basic idea of our feature extraction is as follows: in
classification of data we have some kind of objectives or
intention. This means that in most of the cases we are
interested in classification of a particular set of classes,
not all of the terrain objects included in the image. Thus
we introduce subjective significance explicitly into feature
extraction. The evaluation to be used is the accuracy for
the particular classes, though conventional feature extrac-
tion methods considering only the average accuracy for
all the classes in the image. The purpose of our feature
extraction is to extract a set of features which optimally
separate one class from another among a particular set of
important classes.

One of the conventional methods of feature extraction
utilizes an exhaustive search for the best subset of sen-
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sor channels using a separability measure between classes
(Swain, 1978), and another uses principal component anal-
ysis (Ready, 1973). The former requires a lot of computa-
tion time to evaluate all the combinations of channels. The
latter is not optimal because the features are not selected
from the viewpoint of discrimination. Canonical analysis
can also be used (Schowengerdt, 1983) and gives better re-
sults than principal components. It extracts the features
which give the best average separability among classes.
However, they are not always suitable for significance-
weighted classification.

Our method extracts appropriate features as linear combi-
nations of orthogonalized and reduced components which
are obtained by principal component analysis. Each fea-
ture is determined successively by considering the distance
from the significant classes until the distance satisfies a
condition.

We applied the results of feature extraction for evaluating
the current sensors’ efficiency for a specific purpose. The
performance of sensors can be evaluated by comparing the
classification accuracy with that by the extracted features.

2. PRINCIPLE OF FEATURE EXTRACTION
2.1 Description of Data
First of all and as usual, we assume that we can get train-

ing data for almost all the classes in an image to derive
feature with: that is, we can estimate the characteristics
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of most classes included in the image.

We denote hyper-dimensional data (N dimension) by a
vector y = (y1,---,y~) (': transpose), and suppose
that they are classified into one of, say, n classes. Then,
y can be decomposed into class mean y, and within-class
dispersion y.: that is, y is written as

Yij = Ya; T Ye;; (1)

(see Fig. 1), where y;; is j-th data of class i. We write
.the covariance matrix of y, ya and y. as C,,, C, and C.
respectively. We call C, and C. between-class and within-
class covariance matrix, respectively. Here, we assume
that the covariance matrix of each class is identical. This
assumption is rather reasonable from the view point of the
generality of training data (Fujimura, 1981).
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Fig.1 Description of data

2.2 Feature Extraction

Here, for simplicity we consider two cases where one and
two most important classes should be discriminated from
all the other classes.

In general, classification accuracy increases as the separa-
bility ™ of classes increases. We use separability to evaluate
the performance of features extracted. We extract the fea-
tures which maximize the separability of a particular pair
of classes that we wish to discriminate.

Our method proposed here consists of two steps of pro-
cessing: pre-processing and feature extraction.

In the pre-processing, hyper-dimensional data y = (y1,
--+,yn)" are reduced and normalized to m (m <« N)
components z = (2z1,:--,2m) by a linear transformation
z = A'y. From the assumption on C., the within-class
dispersion of each class in the original space has the same
ellipsoidal shape shown in Fig.1. After transformation,
they are normalized inte an m dimensional sphere. This
makes the space uniform: this means that the distance
measured in terms of variance does not have directional-
ity in the space.

In the second step, features are successively extracted
(Kiyasu,1993, Fujimura,1994) until there remains no class
which has distance from the particular classes less than the

* "We used the divergence (Kullback, 1959) as a measures of
separability. We call it as distance in the rest of this paper.
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minimum distance obtained so far. Feature extraction is
done by determining sub-space in the feature space: that
is, by making a linear combination of z as a' z, where a is
an m dimensional weight vector which we call here feature
vector. Thus, feature extraction is no other than the deter-
mination of a feature vector. As the space is uniform now,
the direction of an optimal feature vector which discrim-
inates between two classes is obtained just by connecting
the centers of these classes. The feature vectors obtained
are orthogonalized to make independent.

The procedures for determining successive feature vectors
is as follows:

(1) First, we set an optimal feature vector a; between the
two nearest classes among the prescribed classes.
Next, we evaluate the separability on a; for all the
combination of the prescribed classes.

If there is any pair of prescribed classes which does
not have enough separability, we set an additional
feature vector a, between them. We ortho-normalize
the new vector a; with a; as shown in Fig. 2, so that
this feature is independent of the first one.

Features are successively extracted in the same way
until all the distance among the prescribed classes are
larger than the minimum distance obtained so far.
Then, we apply the procedures (2)~(4) to the dis-
tance among the prescribed and the other classes.

(2)
®3)

(4)
(5)

When only one class is prescribed, the procedure starts
from setting a feature vector between the class and its
nearest class in the feature space.

A feature a} z is equivalent to (A a,) y expression using
original data y, because z = A'y, where (A a;) means the
weighting factor for spectral data.

22

0 Z1

Fig.2 Feature vectors discriminating between
two classes

3. EXPERIMENTAL RESULTS OF
FEATURE EXTRACTION

We acquired data for five growth-states of tree leaves (A~E:
from young to fallen), soil, stone and concrete by using an
imaging spectrometer which we developed. We obtained
411 dimensional data from the sensor and used for the
experiments. For estimating the mean and the variance
of each class, 45 training data were used for each class.
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Averaged relative reflectance is shown in Fig.3. In the
following, the covariance matrices of the classes are as-
sumed to be identical.
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Fig.3 Spectral reflectance of objects
( A~E : Leaves of plant )

After reducing and normalizing the data to 7 orthogonal
components, features were extracted from one to another.
At first we selected class A as the most important class
to be classified. The first feature was set between class
A and the nearest class from A (B in Fig.3). The next
feature was set between A and the next nearest class D.
There remains no other classes whose distance from A is
less than that between A-B. The two features characterize
the weighting factors are shown in terms of wavelength in
Fig. 4.

In this case the distance of each class from class A is shown
in Table 1: (a) in the original 7 dimensional space, (b)
1 dimension (the first feature), and (c) two dimensional
space made by the first two features. From (c), it is seen
that the minimum distance is that between A and B which
was already obtained in (a). Thus, the two features are
sufficient for this case.

To confirm the validity of this method when compared
with canonical analysis, the classification accuracy was es-
timated by test data of 196 samples for each class. Each
sample was classified by a maximum likelihood method.
Figure 5 shows the classification accuracy for the class A

Table 1 Distance from class A (Relative distance)
( A~E: Leaves, F: Soil, G: Stone, H: Concrete )

(a) Distance in 7 dimension

B C D E F G H
Al44 97 183 155 161 16.0 171

(b) Distance in 1 dimension

B C D E F G H
Al44 74 16 34 27 19 25

(c) Distance in 2 dimension

B C D E F G H
Al44 95 183 125 150 152 163
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in terms of the number of features.

The accuracy depends on the number of features used,
and is higher than that by canonical analysis about 19%
(one feature) and 8% (2 features). The confusion matrix
is shown in Table 2.
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Fig.4 Weighting factors for the significant class A
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Fig.5 Classification accuracy of calss A versus
number of features
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Table 2 Confusion matrix
( A~E: Leaves, F: Soil, G: Stone, H: Concrete )

(a) Classification using first feature 6
(%)
A_ B _C D E F d H 3 4 1
A ]699 0 0 112 36 31 92 31 s, |
B| 0 464 255 0 194 87 0 0 g [/V\
C 0 1.5 98.5 0 0 0 0 0 § 0
D|27.0 26 0 46 204 270 133 5.1 - / W \
E| 0 10 0 0 388 429 26 148 S 27 ‘
F 0 1.0 0 0 16.8 495 7.1 25.5 g 41 \/\
G 1.0 0 0 6.6 0.5 321 34.7 250
H 0 0 0 1.0 16.3 52.0 14.3 16.3 -6 . " . ! .
500 550 600 650 700 750
(b) Classification using first two features Wavelength [nm]
(%) (a) Feature 1
A B C D E F G H
Al893 107 0 0 0 0 0 0 6 ‘ , ' , '
B 0 97.5 2.6 0 0 0 0 0
C 0 0 100 0 0 0 0o .0 - 4+ ]
D| 0 0 0 9.3 31 10 41 15 3
E| 0 0 0 10 781 179 0 31 o 20 /j\ /\\ 1
F| 0 0 0 0 0 934 66 0 2 % //\J
G| 0 0 0 31 0 306 464 19.9 > / V\/\\M JJ/ \
H| 0 0 0 230 0 179 82 510 E ol A
o
S
Next, we applied our method to the case where two most
significant classes A and B are appointed. The distance . - : . :
of each class from class A and B is shown in Table 3 (a). 500 550 600 650 700 750
In this case we set the first feature between A and B. The Wavelength [nm]
table of distance in this feature space is (b). In the same (b) Feature 2
way above we successively set two features. The distances
in 2 dimension are shown in (c). Fig.6 Weighting factors for the significant classes A and B
Table 3 Distance from A and B (Relative distance)
( A~E: Leaves, F: Soil, G: Stone, H: Concrete ) ~ 100
. o = 90 e '
(a) Distance in 7 dimension g e
A B C D E F ¢ © 5 8
A| — 44 97 183 155 16.1 16.0 17.1 g 70
B|44 — 70 185 152 160 16.1 17.1 5 60 ,
®
(b) Distance in 1 dimension .g 50 c‘;';?orgggﬁawgwggs —:——
A B C D E F G H 4 40 -
Al — 44 74 16 34 27 19 25 © 4
B|44 — 3.0 2.8 0.9 1.7 2.5 1.9 1 2

Number of Features

Fig.7 Classification accuracy of calsses A and B

(c) Distance in 2 dimension
versus number of features

A B C D E F G H
A | — 44 92 145 155 150 14.0 146
B|44 — 62 147 152 148 141 145

4. APPLICATION FOR SENSOR EVALUATION

It is seen that the two features are sufficient. The features =~ We applied the result of feature extraction to the eval-
are shown in the form of the weighting factors in Fig. 6. uation of performance of sensors. The performance of a
The classification accuracy for A and B is about 16% (one sensor is evaluated by classification accuracy of particular
feature) and 6% (2 features) higher than that by canonical classes which are defined to be significant for a specific
analysis (Fig. 7). purpose.
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Hyper-dimensional data acquired are separated into two
groups, one is used for feature extraction and the other
for estimating the classification accuracy. In the first step,
significance-weighted features are extracted using the first
half of the data. In the next step, the other half of the data
are classified by using the extracted features and by using
the spectral bands of a sensor under consideration. We use
the accuracy of classification as an index of performance

for a specific purpose. If the accuracy by a sensor is as

high as the accuracy by the extracted features, the sensor
can be considered to have sufficient performance.

Our spectrometer for experiments does not cover all the
spectral region of current sensors. In order to confirm
the validity of this method, we applied it to the subset
of bands from the Coastal Zone Color Scanner (CZCS).
Though the CZCS has six spectral bands, only three of
them (bands 2, 3 and 4 in Fig. 8) are covered by our spec-
trometer. Figure 9 shows the classification accuracy for
classes A and B, by the three bands of CZCS, and by the
extracted features. The former was lower than the latter
by about 6% when the number of bands is three. We know
that the performance of the bands 2, 3 and 4 of CZCS is
not sufficient for classifying the classes A and B.
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Fig.8 Three bands used for experiments
(bands 2, 3 and 4 of CZCS)
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Fig.9 Classification accuracy by bands 2, 3 and 4
of CZCS and by extracted features

5. CONCLUSIONS

We have proposed a feature extraction method for
significance-weighted classification of hyper-dimensional
data. The method was tested using 411 dimensional hyper-
spectral data, in which one or two significant classes were
appointed. By successively extracting features, a sufficient
number of features to classify the prescribed classes were
extracted. It was found that classification accuracy of par-
ticular classes increased by more than several percents,
compared with classification using the features extracted
by canonical analysis. To expand this method to the case
of more than two significant classes or of many classes in
an image is straight forward.

We have also presented a method for evaluating the perfor-
mance of current sensors by comparing classification accu-
racy with extracted features. It would be shown that the
spectral bands of current sensors are not always optimal
for a specific purpose, and can be improved by designing
them appropriately.

Extension of this method to designing spectral bands for
a specific purpose and to extracting quantitative infor-
mation efficiently and accurately from hyper-dimensional
data are subjects for a future study.
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