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ABSTRACT:

Due to the speckle effect of coherent imaging the detection of lines in SAR scenes is considerably more difficult than in optical
images. In spite of this, users of SAR data strongly demand their reliable and accurate detection. Therefore, a new approach to
detect lines in noisy images using a Markov random field (MRF) model and Bayesian classification is proposed. The unobservable
object classes of single pixels are assumed to fulfill the Markov condition, i.e. to depend on the object classes of neighboring
pixels only. The influence of neighboring line pixels is formulated based on potentials derived from a random walk model. Locally,
the image data is evaluated with a rotating template. As SAR intensity data is deteriorated by multiplicative noise, the response of
the line detector is a normalized intensity ratio which results in a constant false alarm rate. The maximum a posteriori (MAP)
estimate of the object parameters is approximated using simulated annealing. To obtain results with less computational effort the
iterated conditional modes (ICM) estimator is applied io the maximum likelihood estimate. The approach integrates intensity,
coherence from interferometric processing of a SAR scene pair, and given Geographic Information System (GIS) data.

1. INTRODUCTION

Lines in SAR scenes can be used for precision geocoding of
SAR scenes or precision registration of SAR scenes with
images acquired by other sensors (Leberl, 1990). Extracted
lines are a basis to verify as well as update linear objects in
GIS or in maps (Caves, 1993). Geologists use SAR scenes to
detect lineaments, as the SAR sensor is very sensitive to geo-
logic structures. The problem with lines in SAR scenes is that
they are not only difficult to detect (Adair & Guindon, 1990;
Hellwich & Streck, 1996), but that they are also partly in-
visible depending on the azimuth of the incident radiation
(Hendry et al., 1988). In this paper as lines we regard narrow,
elongated areas with approximately constant image intensity
which are bounded by bright or dark regions. Note that this
includes also lines which are bounded by a bright region on
one side and a dark region on the other side.-

In the past several approaches to the detection of linear struc-
tures in SAR scenes have been taken which can be differen-
tiated into three groups depending on whether they mainly rely
on a local evaluation of the intensity function, whether they
consider more global criteria, or whether combine both. Local
detectors either compute geometric properties like the first or
the second derivative of the intensity function (e.g. Burns et
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al., 1981; Kwok, 1989), or they conduct a statistical evaluation
of regions often defined by a rotating template (e.g. Caves et
al., 1992; Lopes et al., 1993). Several investigations had the
result that a local gradient computation is not suited for the
detection of edges as the speckle effect of coherent imaging
causes a noisy response of the edge operators (Geiss, 1984;
Bellavia & Elgy, 1986; Adair & Guindon, 1990). Among the
operators using statistical parameters those computing the
intensity ratio of neighboring regions have been shown to give
the most reasonable responses (Adair & Guindon, 1990; Caves,
1993). They have a constant false alarm rate, as the standard
deviation of SAR intensity is equal to the intensity itself.

Approaches using more global criteria are the methods based
on the Hough transform (Wood, 1985; Quegan et al., 1986;
Skingley & Rye, 1987; Green et al., 1993), minimum-cost
search (Bellavia & Elgy, 1986) or dynamic programming
(Wood, 1985) to extract thin lines from SAR images. In spite
of promising results the use of the Hough transform is limited,
as in this context it can only be applied to the detection of
straight lines.

Methods combining local operators with a more global evalua-
tion are those developed by Samadani & Vesecky (1990) and
Arduini et al. (1992). They use Bayes’ theorem and a MAP
estimation to combine a conditional probability to observe
certain image data given a linear structure with a prior prob-
ability derived from the generic knowledge that lines are con-
tinuous and neighboring pixels depend on each other.
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Our new approach for the extraction of linear structures is
related to these methods, as it is based on Bayesian inference
and formulates prior knowledge about the continuity of lines as
an MRF. To overcome the difficulties in the detection of linear
structures the approach integrates generic knowledge about
lines, given GIS data and the SAR scene data. The generic
knowledge can be subdivided into three parts. The first part is
the knowledge about the physical appearance of lines, i.e.
narrow, elongated areas with approximately constant image
intensity (see above). This type of knowledge is used to evalu-
ate the scene data. In terms of Bayesian approaches it is there-
fore incorporated in the conditional probability density function
(PDF) to observe scene data given a linear structure. The
second part of knowledge about lines says that a line is con-
tinuous over a certain region of the scene. This means that a
line can be assumed in a location where there is not enough
physical evidence, if neighboring locations show sufficient
evidence. This knowledge is derived from a random walk
model and used in the prior PDF modeling the relationships
between pixels of linear structures based on an MRF. In addi-
tion to the generic knowledge about the appearance of linear
structures, the specific knowledge of the presence of a certain
linear structure as given by a GIS is incorporated into the
approach as third part of the knowledge. At pixels located at or
close to where the GIS indicates a linear structure the prob-
ability to detect a linear structure having the corresponding
direction is higher than at pixels at a larger distance.

As SAR data intensity is used optionally complemented by
coherence resulting from an interferometric evaluation of a
SAR scene pair. This feature isa step towards a utilization of
the full information content of the complex SAR data.

In section 2 we explain how Bayes’ theorem provides the
framework to implement an approach to the detection of linear
structures. Section 3 describes the modeling of the prior PDF
of continuous lines based on an MRF and a random walk
model for particles. In section 4 the conditional PDF for the
local evaluation of the scene data is explained. Section 5 is
dedicated to the computation of an optimal interpretation of the
SAR scene by sampling from the posterior PDF. Finally, in
section 6 the results of tests of the algorithm are presented and,
in section 7, conclusions and recommendations are given.

2. BAYESIAN LINE EXTRACTION USING MARKOV
RANDOM FIELDS

The extraction of linear structures can be based on a Bayesian
approach to solve the inverse problem of computing the loca-
tion of lines from the measured scene data (Oliver, 1991; Koch
& Schmidt, 1994; Winkler, 1995). The posterior probability
density of the object parameters given the scene data is derived
according to Bayes’ theorem

oh)-

p(yle)- p(e)

p()

.1
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where € is the object parameter vector. € contains one element
g, for each site se.5, i.e. regularly for each pixel of the scene S.
Depending on whether the object is described by one or more
parameters at each site, g; can be a scalar or a vector. For the
time being we assume that €, is a scalar taking the state "line
site" or 'no-line site", i.e. the state space is
E, ={"linesite","no— line site"}. Sometimes we will have to
refer to a site object parameter variable which takes a specific
state, i.e. we will have to make a difference between a variable
and its instantiation. In formulas we will express this as Eg=¢,.
The scene data vector y also contains one element ¥ for each
site of the scene. As our goal is the combined evaluation of
intensity and coherence, y, is vectorial. The probability density
of the data vector p(y) can be omitted, because it is independ-
ent of €; then Bayes’ theorem becomes

plely) = p(te) ple).
The prior probability density p(€) and the conditional probabil-
ity density of the scene data given the object parameters p(yle)

are to be formulated according to our knowledge about linear
structures and the scene formation process.

(2.2)

To simplify the estimation of the object parameter at a site s
we assume the object parameters as well as the ‘scene data to
be MRF. A random field is Markovian, if for all x

p(xslx,,r # s) = p(xslaxx) 2.3)
where dx, is a neighborhood of s considerably smaller than

the complete scene. Using this assumption, the conditional
density of an object parameter value at a site s is
p( ,0y,.0€ Jee plyla »\.,8“.)~1)(8A\.Ia£s).

?'iys 7 s/ PAJ 5|
In the case of dy, ={}, i.e. independence of the data from its

£l 2.4
neighbors, (2.4) simplifies to

p(ss'y‘\"ags) i p(y.vies) : p(ﬁxlaﬁl‘).
This is strictly true only for uncorrelated data.

2.5)

For further reasoning we use the equivalence of MRF and
neighborhood Gibbs fields. In Gibbsian form the probability

density p(x) is expressed as
_ exp{——H (x)}

plx)= SeorlA@)]

z€X,
where X, is the configuration space of X, i.e. the set containing
all possible instantiations of X. The energy function H(x) of an
MRF which is equivalent to a neighborhood Gibbs field is

H(x)= Y,U4(x)

AcS
where each clique A is a subset of the scene S containing sites
with a certain geometric configuration, and Uy is a potential of
A. The conditional probability density at a site s results from a
summation over the set K of all cli?ues A containing s

p(x,\'lax.\‘) o< exp —}Is(xslaxs)} (2.8)

where H‘.(xslax_‘.)= Yu As(x“,laxx). Now we are able to
AeK|

(2.6)

@7

express (2.5) in terms of energies:

Hs(e.vlys’ags) = Hx(yslex) + HA\'(S.\'|38.\')' 2.9
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The scene data y is a vectorial MRF ysT =(y1x ycx) where

VI, and yc, are the intensity and the coherence, respectively. If
y I‘Y and yc; are considered as independent, (2.9) can be written
as (Schistad Solberg & Taxt, 1994)

H.\'(es yIJ. 7yCA. ’ag‘s) =
Hs(ylx lgs) + H\'(yCJS‘\') + H\'(Eslaes)

The components of (2.10) are explained in detail in chapters 3
and 4.

(2.10)

3. PRIOR KNOWLEDGE ABOUT LINEAR
STRUCTURES

Two types of prior knowledge are expressed by the prior PDF:
the generic knowledge about continuous, elongated linear
structures, and the specific knowledge about certain linear
structures given by a GIS.

3.1 Generic Knowledge About Continuous Curvilinear
Structures

The model of continuous curvilinear structures was inspired by
the work of Williams & Jacobs (1995) about stochastic com-
pletion fields. They describe occluded, but perceptually salient
contours with random walks of particles having its source at
unoccluded points of the contours. The path most probably
taken by the particles is assumed to be the location of the
illusory contour. We use a similar random walk model to
derive the potentials of two-pixel cliques of a neighborhood
Gibbs field. A neighboring line site ¢ is treated as a source of
random walks whereas the site s, i.e. in terms of MRF the site
for which the energy is computed, serves as a sink. The more
particles pass through s the higher is the probability that s is a
line site.

In section 2 we assumed a site has the object parameter values
g, "line site” or "no-line site”. We will now refine this rather
general model. A line or a migrating particle passing a site has
more properties than only its quality of being a line or a line
particle. Its path has a certain direction and curvature which
can be estimated as well. Thus the state space E; of the object
parameters € becomes

E, ={"no—line","line(® ¢ ) i€ L Thje{L 7Y} G0
where 6; are I discrete directions equally spaced in the interval
[O,n[, and K; are J discrete curvatures equally spaced in the
interval [—-Kmax ,Kmax] , and ¥ is the magnitude of a maxi-

mum curvature. Note that € is still a scalar.

The particles of the random walk originate at a certain position
(xg ¥p) in the x, y-coordinate plane and possess a direction 6,
and a curvature ¥, (Fig. 3.1). During each step of the random
walks x, y, 6, and « are updated according to
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)'c=1_~cos(9 +l£j
2

- K
y=1-sin/® +[—
Y [ 2)

0 =lx + é(O,cse)

(3.2)

K =K(0,0)

K

- . K Coe A . . .

where [ sm(l-;). X, y,0 and K specify the change in
position, direction and curvature, [ is the step size, and 6 and
K are normally distributed, zero-mean random variables with

standard deviations o and o, With each step a certain frac-
1

tion of the particles decays. The probability of decay is I—e *
at each step where 1 is a decay parameter being large for strong
or long lines and small for weak or short lines. Figs. 3.2 and
3.3 show examples of simulated random walks. At each grid
point particles have been counted differentiated by state ac-
cording to (3.1). For reasons of better presentation the curva-
ture-state counts have been combined. The resulting count for
each direction state is shown by a line in the appropriate di-
rection with a length proportional to the logarithm of the count.

-

| Ple, )
Fig. 3.1. One step of a random walk.

' L L ' . L L 1 1 1
e 1 2 3 4

Fig. 3.2. Random walk simulation with k=-0.1, 7=30, 65=0.02,
0,=0.02.
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Fig.3.3. Random walk simulation with K0=O, 1=13, Ge=045, GK=0.0L

For the computation of the energies H\.(ss|as‘\.) a neighbor-

hood system of two-site cliques is defined (Koch & Schmidt,
1994). Each site has neighbors of varying order forming a
clique with each of those neighbors. Fig 3.4 shows the neigh-
borhood system of site s up to order 5. For an element €, of the
state space E, the counts of the random walk model are
summed clique by clique. Each count depends on the parame-
ter values & and g, i.e. on direction and curvature in the
neighboring site ¢ and the direction and curvature proposed at
site s, as well as on the location of ¢ with respect to s. If g is
"no line", the counts at s are 0 independent of €;. High counts
for g indicate a high probability of &g, as the presence of a
neighboring line site supports the presence of a line with a
certain direction and curvature.

514345

21 1] 2] 4

4
3/ 1] s |13
4121 1|2 4

51431415

Fig. 3.4. Neighborhood system for a two-site clique Gibbs field. Site s and
another site form a two-site clique of neighborhood order n shown in
the graph.

We now extend our two-site clique neighborhood model, as a
line should also make certain neighboring lines improbable.
This is because line sites parallel to a directly neighboring line
site do not conform with the elongatedness of lines. It can be
modeled with the same type of random walks. We only
imagine a different type of particles, called inhibiting particles,
diffusing perpendicularly to the direction of a line site. The
particles inhibit the presence of lines perpendicular to the
direction of propagation in the same way the particles used
before supported the presence of lines in the direction of
propagation. Therefore, the corresponding counts make the
presence of those lines improbable and are subtracted from the
supporting counts.

Introducing a one-site clique containing only s, we can control
the overall probability of a line independent from the state of
neighboring sites.

Hence, in agreement with (2.8), H, \v(sx|8£“.) is computed from
~-In(c) ifc=1
Hs(s.\"aes) = .
-In(1)  ifCc<!
C=Cy (e,)+ X, Co (eles: st € 4,)
4z

(3.3)

where Cy J is the count-equivalent of the one-pixel clique:

¢ if e, ="line(0,, k)"

CA (8y)= 1 § ( K s) )
1 . " 3 "

c, if £, ="no - line
cyand ¢, are empirically chosen "basic currents" which control
the overall probability of line and no-line sites. ECAZ is the

. Ay

sum of the counts of the two-site cliques containing s.

3.2 Specific Knowledge from GIS Data

The intention is to use GIS data to support the extraction of
linear structures. It may for instance be known that a road is
crossing the imaged area, and an approximate registration of
the SAR scene and the GIS data may be given. Around the
projection of the road center line into the SAR scene the prob-
ability to detect a line with the direction and curvature of the
road center line should be increased. These facts have to be
used to compute the energy of the prior PDF.

It is known that the registration of SAR and GIS data can only
be accurate to a limited degree. What is more, the decision
about the exact location of the linear structure in the results of
the algorithm has to depend on the SAR data and not on the
given geographic information. Therefore, a corridor symmetri-
cal around the object center line is defined inside of which the
probability of the object class ¢, = line(8;,x;) is uniformly
increased. 0;, k; are the direction and curvature of the object
center line at the point i closest to site s (Fig. 3.5).

é?mef Iine

. }corridor

Fig. 3.5. Corridor around an object center line in which the detection of
lines with direction and curvature of the object center line is
increased.

The parameters of the algorithm are the width of the corridor
which depends on the accuracy of the registration, and the
amount by which the probability of line detection is increased.
The increase in probability is taken into account by changing
the computation of Cy / in (3.3) to
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¢ +c, ifeg,=" line(G‘\,,Ks ' A

s e corridor A =0, AKX =K;
Cy, (8 A.)= 13 ife, ="line(6 s+ K ) otherwise

4

(3.4)

g N L]
" if e, ="no-line

¢, is an "additional current" due to the presence of a GIS
object. The membership of a site in a corridor and the state
which is affected by this are computed prior to the line extrac-
tion and stored in a raster map.

4. LOCAL DATA EVALUATION

According to (2.10) we are dealing with two types of data: the
SAR intensity and the interferometric coherence. Both are
evaluated in a similar manner which is treated in this section.

For edge detection in SAR intensity data the ratio edge detector
has been shown to give the best measure of edge strength. It
corresponds with the multiplicative noise characteristics of the
data and results in a constant false alarm rate (Touzi et al.,
1988; Bovik, 1988; Adair & Guindon, 1990; Caves, 1993). Our
approach is also based on the ratio detector.

In general the ratio operator compares two small regions of the
image, e.g. the left and the right half of a window. In each of
the two regions the averages of the intensities are computed.
The normalized ratio output is the ratio of the two averages
using the larger one as the denominator:

max((ll >,<12>)

where <Il) and (12) are the mean intensities. If r is close to 1,

“4.D

the regions do not contrast. If » approaches 0 and the intensity
is homogeneous in both regions, there is a discontinuity along
the boundary of the regions.

To detect a line a detector mask is defined which consists of
three regions (Lopes et al., 1993): a line region and two regions
at the sides of the line region (see Fig. 4.1). Curved lines of
varying widths can be considered. The detector masks are
generated prior to the processing of the scene for a set of line
directions, curvatures and widths. They correspond to the
discrete line directions and curvatures defined by (3.1).

The ratio operator is applied to all combinations of the detector
mask regions. The line detector has to be prevented from
giving a response to the location of edges or strong scatterers.
Therefore, we follow a procedure similar to the one proposed
by Lopes et al. (1993). In case a line is present at the processed
location the line region is homogenous, which means that the
pixel intensities do not vary much. For SAR intensity data, this
condition can be checked by computing the coefficient of
variation

4.2)
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Fig. 4.1. Geometries of detector masks for line detection. The spot in the
center of the window marks the site to be investigated.

where (I ) is the mean intensity and o is the standard devia-

tion of the intensity I. As o=/ for homogenous regions, v; of
the investigated region has to be less than a threshold some-
what larger than 1 if the region does not contain any structures.

As the average values of the side regions may be influenced by
the presence of strong scatterers, they are replaced by the
median of the intensity values. It is checked whether the line
intensity differs significantly from the intensities of both side
regions by computing the ratios between the line region and the
side regions. These ratios are tested for membership in the
ratio distribution of regions without contrast, i.e. regions which
have the same: intensities. For this purpose we adopted a
threshold derived from the PDF of the normalized ratio » which
is based on SAR intensity statistics (Caves, 1993):

N,L
N
I'(N,L+N,L) (11 Nz}
1,,0,,N;,N,,L)=
p(ri 124254V [54¥ 2 ) F(N]L)F(NZL) ( rIZ NI]N1L+N2L
J+22. 00
’ I, N,

N,L
"y Np
I, N, 1

NL+N,L |,
12 N2
I, N;

(4.3)

T

I; and I, are the intensities, N; and N, are the number of
pixels in both regions, and L is the number of looks per pixel.
L is computed by dividing the ground pixel size by the size of
the resolution element of the sensor. Thus N;L is the number of
independent samples. Fig. 4.2 shows the PDF for various
contrasts I;/I,. 1t is strictly valid only for ratios of averages and
not of medians, but tests have shown that it is a good approxi-
mation. Two regions are considered to be significantly different
if r<rj, where r; is a threshold derived from

Tp(rll, = 1,,N,,N,,L)dr = 0.05. (4.4)

0

If the line region is significantly different from both side
regions, a line site has been found. Then the side regions are
checked for similarity which is assumed, if r>r, where r5 is a
threshold derived from

rfl’(rilz =1,,N;.N,,L)dr=0.5. (4.5)
0
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If the side regions are not similar, the ratio response of the
operator is the larger one of the normalized ratios between the
line region and one of the side regions, i.e. the ratio towards
the less contrasting side. If the side regions are similar, a
common median and a normalized ratio between the line and
the united side regions is computed.

probability density

2]
9 0.10.20.30.490.50.60.70.80.9 1
ratio )
Fig. 4.2. PDF of the normalized intensity ratio for

various contrasts I;/1;.

From the resulting ratio responses the energy values of the
intensity data HS( yr S|e_v) are derived. Instead of the intensity

of a pixel we utilize the ratio r, to compute Hg, i.e. we set
Hs (ylxlgs) = H.\‘ (’:\'Is‘\')

is a derived observation.

(4.6)

where r¢
A reasonable way to derive energies from observations is to
assume normally distributed observations. For those the energy
H is computed from (Koster, 1995)

(x_ va)2

Hix)=
(x) 7o

@7
where p, and G, are mean and standard deviation of the
normal distribution. From (4.3) it is known that the ratio is not
normally distributed. Nevertheless using (4.3) instead of (4.7)
poses difficulties, as we do not have any reasonable assump-
tion about the line contrast /,/I, a line might have. Further-
more, rg, was computed using several tests for region homo-
geneity and similarity which is why the distribution of r, is not
strictly (4.3). Therefore, we propose to compute Hs(rs|£_\,) from

(4.7) where , =0 for line sites (e, =" line(8,%)"; cf. (3.1)) and

Sy, is roughly adjusted to the line contrast in the processed
scene.

For no-line sites (€, ="no —line" ) we propose to use a uniform

distribution instead of a normal distribution

H,(x)= constant 4.8)
This idea is borrowed from maximum-likelihood classification
of multispectral imagery where for the land-use classes normal
distributions are utilized (e.g. Richards, 1993). If the maximum

density prax ( yslex) is less than a threshold T, pixel s with the

multispectral data vector y, will not be classified. Such a pixel
corresponds to a no-line site in our case. A reasonable value for
T can be derived from (4.7) when a maximum ratio . for
line pixels is assumed. r,,,. can be determined from a sample
image.
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We are now able to formulate the complete energy function of
the intensity ratio:-

2
o if s is aline site
_].)?
H, () =120, 4.9)
ma"2 if sis ano-line site
20,

The PDF of this energy function is illustrated by Fig. 4.3. The
bell-shaped line shows the PDF of a line site based on a
normal distribution, and the horizontal line shows the PDF of a

no-line site. Using H_,v(rslas) without a prior energy

Hx(sxlaes), which is the case with any maximum-likelihood

classification, is equivalent to thresholding the response of the
ratio operator.

E\ 8.9 \y
) \~
g 0.8 "
<
o 0
N
N
&2 e
I
o
<

8.3

N

e.2 \U\

et ¥ '\‘\\

. ; l X .

v e o .
ratio ) )
Fig. 4.3. PDF of the operator output intensity ratio.
The coherence is processed in a similar manner as the inten-

sity. The data is evaluated applying the same detector masks,
but instead of the ratio the difference is computed. The checks
for homogeneity, dissimilarity and similarity of regions are
essentially the same as for intensity data except that the
thresholds are derived much more empirically, as the statistical
properties of coherence data are not as well known as those of
intensity data (but cf. Tough et al., 1994a; 1994b).
Hs( .chles) = H‘,.(dx]ss) is computed according to (4.9) where

all ratios r are replaced by differences d.

5. ESTIMATION OF THE OBJECT PARAMETERS

Our goal is the estimation of the object parameter vector & (cf.
(3.1)). An optimal € is the ore that results in a global maxi-
mum of p(ely) which is difficult to determine owing to the
overwhelmingly large configuration space of €. Presently, we
apply two methods two approximate the global optimum. As an
approximation to a MAP estimation we use simulated anneal-
ing in combination with Gibbs or Metropolis sampling, and as
a faster deterministic approach which is only guaranteed to
find a local optimum Besag’s ICM estimator. As these methods
have been intensively treated in various publications (e.g.
Geman & Geman, 1984; Busch, 1992; Koch & Schmidt, 1994;
Winkler, 1995; Guyon, 1995; Koster, 1995), we will only give
a brief description.
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The sites are visited once per iteration in a random sequence.
For simulated annealing the object parameters of the sites are
randomly initialized with the proportions between line and no-
line sites given by ¢; and ¢, according to (3.3). The computa-
tion of probability densities from energies is conducted as

1)(x‘v lox, ) oc expd _{{(JC__\TP*XQ

5.1
(cf. (2.8)) where T is a temperature variable. It is\decreasing
according to a cooling schedule
1
C-lni

where C is a cooling constant and i is the index of the current
iteration. A theoretical value for C which ensures that the
simulated annealing procedure finally leads to a global opti-
mum exists, but it would require prohibitorily many iterations
until stability and the optimum were reached. Therefore, fast
cooling with an empirical value of C close to 1 was used.

T:

(5.2)

For the ICM algorithm ¢ is initially set to the maximum likeli-
hood interpretation of the image which is the result when each
site is visited once and E, is set to the object parameter €
which gives the minimum energy Hx(ysles) , 1.e. the maximum

conditional density pp.. ( yx|£x) of the observations given the

object parameter. During ICM estimation the discrete condi-
tional PDF is computed in the same way as for the Gibbs
sampler. In each site E; is set to the value € with the maximum

conditional posterior probability p(eslyx,ae_v). The algorithm

stops when p(s!y) reaches a maximum, i.e. when no sites

change their states any more.

6. RESULTS

The model of continuous curvilinear structures based on
random walk simulations was tested by Gibbs sampling from
the prior PDF p(g). For a 128 by 128 pixels image we obtain
results such as the one shown in Fig. 6.1. The picture shows
thin curvilinear features some of which are connected starting
to form a network. This is not quite what would be expected of
a road network. But consider that the model is based on
comparatively small neighborhoods. What is more, Gibbs
sampling means drawing random samples from the complete
configuration space where transitions between the most prob-
able states can only occur by changing the state of single sites,
i.e. by obtaining less probable states. Therefore, this result is
acceptable.

A TOPSAR airborne data set consisting of intensity (Fig. 6.2)
and coherence (Fig. 6.3) was evaluated. Fig. 6.4 shows the
response of the intensity-ratio operator based on detector
masks for 3 pixel wide dark lines aiming at the detection of
narrow roads. This is the information contained in the data
which is handed over to the Bayesian inference procedure. Fig.
6.5 shows the result of a maximum likelihood classification of
the intensity data which is equivalent to thresholding the
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intensity-ratio response of Fig. 6.4. The result is noisy, lines
vary strongly in width and direction, and have several gaps.
Note that this is a result obtained without using prior
knowledge about the continuity of linear structures. Fig. 6.6
shows the result of 25 iterations of simulated annealing. Many
of the gaps have been closed even in locations where the ratio
image does not show a significant response of the ratio line
detector, the width of the lines usually is small and does not
vary much, and the detected directions are stably following the
directions of the lines. This demonstrates the usefulness of the
line model.

Fig. 6.7 results from 25 iterations of simulated annealing
evaluating both intensity and coherence data. In comparison to
Fig. 6.6 an improvement of the line extraction can be realized.
Fig. 6.8 shows the corridor generated from a road center line
given in a GIS. Once this data is included into the estimation
procedure this road can be detected more easily (see Fig. 6.9).

7. CONCLUSIONS AND RECOMMENDATIONS

We proposed a new approach for the extraction of linear struc-
tures from SAR intensity and coherence data in a Bayesian
framework using an MRF to model continuous curvilinearity.
Test results demonstrate the plausibility of the MRF line
model as well as the usefulness of combining SAR intensity
with coherence and given GIS data when extracting linear
objects.

Further tests of the approach are necessary. Presently, we con-
sider improvements regarding speed and scale space integra-
tion. Computational speed could be gained by using local
highest confidence first (LHCF) estimation (Chou et al., 1993)
which would implicitly relate the algorithm to line following
algorithms. Scale space requirements can presently be met by
using different line widths in the detector masks. A more
effective way would be the use of an image pyramid or a multi-
resolution MRF model (Lakshmanan & Derin, 1993; Bouman
& Shapiro, 1994). We intend to make these topics subjects of
future publications.
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Fig. 6.1.“Synthetic line image generated by
Gibbs sampling from the prior distribu-
tion. Different grey values/colors show

Fig. 6.7.
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Fig. 6.4. Response of the intensity-ratio line

detector.
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Result of MAP estimation using
simulated annealing based on inten-

sity, coherence and generic prior
knowledge.
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Fig. 6.5. Maximum-iikelihood classification of
the intensity (without utilization of

Fié. 63. Histbgram equalized coherence of
TOPSAR scene of 94/08/05.
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Fig. 6.6. Result of MAP estimation using

; simulated annealing based on intensity
prior knowledge). and generic prior knowledge.

Fig. 6.8. Corridor along road center line given

in a GIS.
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Fig. 6.9. Result of MAP estimation using
simulated annealing based on inten-
sity, coherence, GIS information and
generic prior knowledge.
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