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ABSTRACT

Automation of Digital Terrain Model Generation and Man-Made Object Extraction from Aerial Images (AMOBE) is a joint
project between the Institute of Geodesy and Photogrammetry (IGP) and the Institute of Communications Technology (Image
Science Group) (IKT) at the Swiss Federal Institute of Technology in Zurich. In the project we develop methods and algorithms
to detect and reconstruct man-made objects, such as buildings and roads, and to generate Digital Surface Models (DSMs)
from high resolution aerial images. Primary attention in AMOBE focuses on high quality reconstruction of buildings as being
one of the more predominantly and frequently occurring 3-D man-made objects in high-resolution aerial imagery. In this paper
we present our research strategy, current results, and make an outlook onto future work.

1 INTRODUCTION

The reconstruction of houses and other man-made objects
in 3-D is currently a very active research area and an is-
sue of high importance to many users of Geographic Infor-
mation Systems (GIS), including urban planners, architects,
and telecommunication and environmental engineers. Man-
ual 3-D processing of aerial images is time consuming and
requires the expertise of highly qualified personal and expen-
sive instruments. Therefore, the necessity to interpret, clas-
sify and measure aerial images and to integrate the results in
GIS is more urgent than ever. It is generally acknowledged
that good data is the most valuable and the most needed
component, prior to computer hardware, software and user
interface.

Methods for computer supported interpretation of aerial im-
agery have progressed in the wake of Computer Vision and
Digital Photogrammetry. The proceedings of the Ascona’95
workshop at Monte Verita, Switzerland gives a good account
of the current state-of-the-art [Griin et al. 1995]. The ob-
jective of the AMOBE project is to develop procedures for
extracting quantitative 3-D information of sparsely built-up
regions even under difficult terrain conditions. This goal pro-
vides complex technical and conceptual challenges and dis-
tinguishes the project from existing methods which work on
smooth terrain without being able to deal reliably with man-
made objects. The applications to Swiss scenery are immedi-
ate. Here, we present the strategies, current work, and some
ideas for future undertakings within the AMOBE project.

In section 2 we present our main strategies. Section 3 presents
the characteristics of the acquired data set. Section 4 deals
with digital surface/terrain models and color analysis to pro-
vide a means to detect and to provide a coarse description
of buildings. In section 5 we present our feature extraction
method and show how to relate pairs of contours to each
other by similarity in position, orientation, and their photo-
metric and chromatic region attributes. A novel approach to
reconstruct complex houses is presented in section 6; it in-
cludes segment stereo matching, coplanar grouping and mod-
eling in 3-D. Finally, we present some ideas of future work.
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2 STRATEGIES AND GENERAL FRAMEWORK

Although the research topics in the AMOBE project span a
large spectrum from Computer Vision to Photogrammetry,
attention is focussed on 3-D reconstruction of buildings, and
in particular on residential houses. Buildings are the most
predominantly and frequently occurring 3-D man-made ob-
jects in high resolution aerial-images, and their reconstruc-
tion requires many components, such as camera models, im-
age processing, matching, texture and color modeling, geo-
metric processing and reasoning, as well as object modeling.
The employed imagery is assumed to be digitized photogram-
metric color photography. With this aerial imagery primarily
building roofs, and not walls, can be reconstructed.

The main features of our strategy for 3-D house reconstruc-
tion are illustrated in Fig. 1. The most important feature of
our strategy is the mutual interaction of 2-D and 3-D pro-
cedures at all levels of processing. This interaction is impor-
tant since neither 2-D nor 3-D procedures alone are sufficient
to solve the problems. Three-dimensional information, such
as Digital Surface Models and 3-D edges, should therefore
be derived as soon as possible. Because 3-D information is
available, object modeling can be done in 3-D, right from the
beginning. Whenever 3-D features are incomplete or entirely
missing, 2-D information should be used to infer the missing

information.
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Figure 1: Strategy employed in the AMOBE project.

Several roofs of the residential houses in Fig 5A are neither
flat nor rectilinear, not even in object space. To reconstruct
the roofs of such complex houses, we have developed a proce-
dure that relies on hierarchical hypothesis generation in both
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2-D and 3-D. Because low-level feature extraction is error
prone, we try to combine as many cues as possible to achieve
redundancy. Our general assumption is that the complete
roof consists of a set of planar patches that mutually adjoin
along their boundary. Our planar primitive can have an ar-
bitrarily complex polygonal boundary, i.e. we do not require
rectilinear roof shapes. Considering the detection and dis-
counting of disturbances along the roof boundary, such as
chimneys and shadows, the remaining edges should have per-
ceptually uniform color properties. By modeling not only the
geometry of the roof, but also the spectral properties along
its boundary we can handle complex roof shapes.

In the current approach, the user is only asked to provide a
rough location of the houses in one image, the subsequent
3-D reconstruction is fully automatic. The combination of
color and DSMs can provide the positions of the houses, as
well as a rough 3-D description. This strategy focuses on
building reconstruction, however, the concept is general and
can be augmented to also include other man-made objects
such as roads and bridges.

3 DATA SETS USED IN AMOBE

A data set' from Avenches (Switzerland) was acquired for
use in the AMOBE project [Mason et al. 1994]. The data
set consists of a residential and an industrial scene with the
following characteristics: 1:5,000 image scale, near-vertical
aerial photography, four-way image overlap, color imagery,
geometrically accurate film scanning with 15 microns pixel
size, precise sensor orientation, and accurate ground truth in-
cluding a Digital Terrain Model (DTM) and buildings. The
manually measured CAD models of the buildings are impor-
tant to evaluate our results. In Fig. 5A-C we show the resi-
dential data set, including the digital surface model and the
manually measured CAD models of the houses. The houses
shown in the residential scene are representative for Europe
and in particular for Switzerland. Since false color infrared
images (CIR) were not available for the Avenches data set,
we used an additional data set of an urban area with mostly
detached buildings for these experiments.

4 USE OF DSMS AND COLOR SEGMENTATION
4.1 Use of Digital Surface Models

Digital surface models are a rich source of information for
building detection [Baltsavias et al. 1995]:

Building position and separation The approximate posi-
tion of buildings can be used to guide 2-D feature extrac-
tion and grouping, spectral classification and image tex-
ture analysis, thereby reducing processing time. Given
the approximate position, the DSMs provide means to
separate buildings from other objects that have similar
low level cues but different DSM characteristics, e.g.
separation of buildings from roads and driveways.

Support in matching DSMs support 3-D feature matching,
e.g. they provide approximations and they can be used
to reduce the number of candidate matches.

Model selection DSMs provide information which allows the
inference of 3-D object hypotheses in model-based build-
ing reconstruction. Depending on the accuracy and res-
olution of the DSM, the following information can be

1The data set can be acquired by ftp from the authors

provided: approximate 3-D size and shape, distinction
between flat and non-flat roofs, distinction between one-
peak, ridge, and horizontal roofs, number of major roof
planes, and the distinction between I-, T- L-, U-, and
X-type buildings.

Ortho-images and ortho-rectified stereo pairs DSMs can
be used in the generation of ortho-images and ortho-
rectified stereo pairs, whereby the latter can be used to
detect DSM errors [Baltsavias et al. 1995].

When buildings adjoin each other, which is often the case in
dense urban areas, some of the above DSM usages become
more difficult or almost impossible.

The extracted DSM must have high accuracy and sufficient
density. We have used commercial packages, which employ
area correlation for DSM generation at digital photogram-
metric workstations in grid mode either in image or ob-
ject space. Several blunders close to the building bound-
aries occur, however, the results are still usable. To avoid
loss of buildings with these packages, the DSM should have
a grid spacing of 0.25 - 0.5 m. Such dense grid spacing
is also necessary to distinguish buildings that are close to
each other and to avoid strong smoothing of discontinu-
ities. For the same reasons a small patch size should be -
used in area-based matching. Better DSMs can be derived
by use of feature based matching or its combination with
area-based matching [Berthod et al. 1995], by the use of
multi-photo matching with geometric constraints [Griin 1985,
Baltsavias 1991], or from airborne laser scanners.

4.2 3-D Blob Detection

Different methods of extracting 3-D blobs, i.e. possible build-
ings, from a DSM have been investigated. Morphological op-
erators are sensitive to the choice of the structuring element
size, particularly in dense urban areas, and have problems
when other DSM blobs are situated close to the buildings, or
when the terrain is steep and irregular. A subtraction of the
DSM from an existing DTM is simple, but DTMs, if they are
available, do not usually have sufficient density and accuracy.
A sufficient accuracy is essential in order to detect low build-
ings. Edge detectors extract most of buildings outlines but
they do not deliver closed contours. Other structures with a
much smaller height than buildings, such as road borders, are
also detected.

The most promising method consists of grouping the DSM
heights into consecutive bins (height ranges) of a certain size.
It corresponds to cutting equidistant slices through the DSM.
Thus, the DSM is segmented in relatively few regions that are
always closed and easy to extract. The method can be applied
hierarchically using different bin sizes, it is simple and fast,
and can be applied globally or locally. The maximum and
minimum bin sizes are determined from the known height
accuracy of the DSM (e.g. 0.5 - 1 m) and the estimated
minimum building height in the image (e.g. 3-4 m). The
hierarchical approach makes use of coarse bins that detect
possible buildings, while the fine bins verify the coarse detec-
tion, provide information for an approximate building model
and separate buildings close to each other. Results of this
method are shown in Fig. 2. For details we refer to [Balt-
savias et al. 1995].
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Figure 2: (A) ortho-image, (B-D) height bins of the Digital
Surface Model (DSM) with 1, 2, and 3 meter size (quan-

tization). By decreasing the bin size a better modeling of
the buildings is achieved. In addition, gabled roofs, T- and
L-shaped buildings, and buildings close to each other can be
distinguished.

4.3 Classification of 3-D Blobs

Objects other than buildings will often be detected as blobs,
for example trees, bridges/over-passes, transportation means,
and big poles. A first elimination of non-building blobs is
performed based on the area, height and minimum dimensions
of the detected blobs. A further separation can be achieved
by using the number and length of extracted straight lines as
well as the size and shape of compact homogeneous regions
within the projected blobs, the weighted histogram of the
local gradient orientation, spectral properties, and context.

Vegetation blobs, in particular trees, are the most prominent
non-building blobs that must be detected and eliminated.
Apart from using spectral information to separate trees from
buildings (see below), we propose a simple procedure which is
based on weighted local orientation histograms. A histogram
of the local orientations of all edge pixels within the pro-
jected blob region is computed. Each entry is weighted with
its magnitude. Assuming regularly shaped buildings, the his-
tograms of building blobs will often contain significant peaks
90° apart. Histograms of more complex buildings contain a
few additional peaks (usually one or two). On the contrary,
histograms of tree blobs are predominantly flat. For details
on the approach we refer to [Baltsavias et al. 1995].

4.4 Combining Color and False Color Infrared Images
with 3-D Blobs

In addition to the above rather simple procedures for blob
classification, we have also investigated into the use of color
and infrared images together with DSM blobs to separate
man-made (MMOs) from natural objects (NOs) [Sibiryakov
1996]. The RGB images are initially transformed into a more
suitable color space — the CIE (1976) L*a™b* color space
(abbr. CIELAB) [Wyszecki and Stiles 1982]. The CIELAB
color space separates the luminant and chromatic compo-
nents of color and is perceptually uniform. In uniform color
spaces, perceptual color differences are computed with Eu-
clidean distances.
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In the following analysis we use only the chromatic compo-
nents ¢* and b*. The lightness component L* was not used
in the classification, because different parts of a roof may
have different lightness, however, the same chromatic prop-
erties. The CIELAB color space allows us to describe colors
more similar to what is perceived by human beings, which is
very useful in handling images under non-uniform illumina-
tion conditions such as shade, highlight, and strong contrast.
A simple classification of the object classes (roads, buildings,
vegetation, cars etc.) is not possible using only color images,
because the different object classes overlap considerably as
can be seen in Fig. 4A. Especially objects with low chroma,
such as roads, shadows, trees, brown or grey roofs, and pa-
tios, overlap in their chromatic components.

A comparison between color and false color infrared images
(CIR) showed, as expected, that a separation between natural
and man-made objects is easier with CIR images. Figure 4B
shows the main clusters for the CIR image in the a™ and b*
color components. CIR images have essentially three major
spectral classes: vegetation, man-made objects and bare soil,
and water. Roughly, the man-made objects form a high and
well-separated peak in the histogram of the a™ channel, thus a
simple thresholding can be used for their detection. With such
a simple approach, bare soil mixes with man-made objects.
Color images have a larger spectral variability and are more
appropriate than CIR images when a larger number of classes
must be determined.

An unsupervised classification based on a simple k-mean clus-
tering is used for both the color and CIR images, where k is
the number of predefined classes. The clustering is based on
minimum distance (Euclidean distance was used). The clas-
sification is iterative in a binary tree fashion and it employs
1 - 3 classification steps, see Fig. 3.

a* and b* color components
of the original image

k=2
step 1 man-made objects '—
k=3
step 2 buildings ! non-buildings

k=3 k=3

step 3 | non-buildings }‘ r ‘i buildings | I buildings non-buildings—l
T

I
end result through combination
of partial classification results
and class region editing

Figure 3: An iterative, binary-tree classification scheme using
unsupervised k-mean minimum distance clustering, where k is
the number of predefined classes. When k=3, the third class
is the rejection class. The binary tree can be further densified
or reduced. The dashed lines show optional processing steps.

In the first classification step, the number of classes is 2 (NO
and MMO). In the second step the MMO image is selected
and k=3, i.e. buildings, non-buildings, and a third rejection
class. The aim of this step is to separate buildings from other
MMO, especially roads, or NO that correlate with MMO like
bare soil. This is successful to a large extent but some class
mixing does occur, e.g. some buildings are still included in
the non-building class. Thus, a third classification step is
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Figure 4: Chromatic clusters of object classes in their (a*,b") color components. (A) using a color image, and (B) using a
false color infrared image. The separation between man-made and natural objects is easier with infrared images.

performed where each of the images for buildings and non-
buildings is classified using k=3 as in the second step. Finally,
the two building images from the third step are combined,
some regions are deleted based on their area, shape and min-
imum dimensions, and small holes in the remaining regions
are filled in.

The MMO class in the first classification step or the building
class in the classifications of the second and third steps can
be found by a procedure, which is based on the projection of
the DSM blobs in the images using the known interior and
exterior image orientation. Since the projected blobs might
have holes, these are filled in by morphological operations.
The MMO or the building class is the one that includes the
majority of the projected blob pixels. Other procedures are
possible that work also when no DSM is available, such as
classification based on color or infrared images, and the char-
acteristics of the edges included in the class regions, such as
straightness, length, and orientation. When these additional
cues are used, the classification can actually stop after the
first step.

As an optional step, a refinement of the detected building out-
line can be performed. DSM blobs usually do not perfectly
outline the building. Therefore, a refinement procedure is ap-
plied by using the classification results of the classes MMO
and buildings together with the DSM and edges. This op-
tional step is described in [Sibiryakov 1996].

Figure 5A shows the residential scene of the Avenches data
set. Figure 5D shows the results of color classification for the
building class. Figure 5E shows the result of color classifica-
tion for the MMO class and the projected DSM blobs, with
NOs shown in black (the upper right house has no blob be-
cause it was outside the DSM). Figure 5F shows the result of
building detection after combining the spectral classification
and the DSM blobs and refining the outline of the blobs by
the use of edges. It can be noted that edges may introduce
some small spurious house elements. With our test images,
buildings were always included in the MMO class. Almost all
buildings were included in the building class.

The above results demonstrate that an approximate detection
of isolated buildings can be performed with practically no
human interaction. However, when buildings are connected,
human interaction is often required to indicate the outline of
the buildings.
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5 FEATURE EXTRACTION AND RELATIONS

All intermediate and high level processing in our project needs
low-level features, in particular straight contours. In this sec-
tion, we present methods to generate an attributed contour
graph and we show how to relate pairs of straight contours
based on similarity in position, orientation, and in photomet-
ric and chromatic attributes. The attributed contour graph
and the similarity relations form an excellent collection of
symbolic data for further processing.

5.1 Edge Detection and Aggregation

Based on the assumption that object boundaries are gener-
ally smooth and mostly contrast defined, much effort has
been devoted to design suitable edge detectors that reliably
detect these 1-D features. The presented work does not re-
quire a particular edge detector, however, we believe it is wise
to use the best operator available to obtain the best possi-
ble results. For this reason, we use the SE energy operator
recently presented in [Heitger 1995]. The operator produces
a more accurate representation of edges and lines in images
of outdoor scenes than traditional edge detectors due to its
superior handling of interferences between edges and lines,
for example at sharp corners. The edge and line pixels are
then linked to produce a contour graph by using the algorithm
in [Henricsson and Heitger 1994]. The result in Fig. 6B is a
high quality representation of the contours connected to each
other at junctions, corner and other important 2-D points.

5.2 Contour and Region Attributes

The contour graph contains only basic information about ge-
ometry and connectivity. To increase its usefulness, attributes
are assigned to each contour and end-point. The attributes
assigned to contours reflect either properties of the contour
or region properties on either side. The latter are denoted re-
gion attributes and are attached to the generating contour. A
region is constructed on both sides of each contour by a trans-
lation of the original contour in the direction of its normal.
When neighboring contours interfere with the constructed re-
gion, a truncation mechanism is applied. For details on the
construction of the regions we refer to [Henricsson 1995].

Since each flanking region is assumed to be fairly homoge-
neous (due to the way it is constructed), the data points
contained in each region tend to concentrate in a small re-
gion of the color space, however, outliers must also be ac-
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Figure 5: (A) the original (RGB) image of the residential scene, (B) the Digital Surface Model (DSM), (C) the manually
measured CAD models of buildings, (D) the result of color classification alone. The pixels of the building class are shown (all
other pixels are black) (E) the result of classification for the MMO class and the projected DSM blobs (in grey), with NO
shown in black. The upper right house is not included in the DSM. (F) the result of building detection after combining the
spectral classification and the DSM blobs and refining the outline of the blobs by the use of edges.

Figure 6: (A) a cut-out from
the original image in Fig. 5A,
(B) The resulting contour
graph with all its contours

and end-points, (C) the
flanking regions with their
corresponding mean light-
ness attributes.
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counted for. The photometric and chromatic attributes are
computed for each flanking region using the CIE L*a™b" color
space. The photometric region attributes are computed from
the lightness component L™ , whereas the chromatic region
attributes are derived from the a* and b* color components.
First, the mean lightness and its standard deviation are es-
timated by applying the Minimum Volume Ellipsoid (MVE)
estimator [Rousseeuw and Leroy 1987] on the L* data. The
inliers in L™ are then used to robustly estimate the mean
vector and the scatter matrix for the chromatic components
(a*,b"). Again, the MVE estimator is used, however, with
two variables (a*,b"). The estimated scatter matrix of the
chromatic cluster is then diagonalized. The chromatic at-
tributes are thereby represented by the mean vector and the
two eigenvalues of the scatter matrix. In Fig. 6C we show the
mean lightness L™ of each flanking region. The photometric
and chromatic region attributes are used to compute similar-
ity relations (next section) and in segment stereo matching
(section 6.1).

5.3 Contour Similarity Relations

Although geometric regularity is a major component in
the recognition of man-made structures, neglecting other
sources of information that corroborate the relatedness
among straight contours imposes unnecessary restrictions on
the approach. A popular means to relate pairs of straight
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contours is by geometric primitives, such as parallel, corner,
and collinear [Fua and Hanson 1991, Kim and Muller 1995,
Lin et al. 1995, Henricsson 1995]. Relating contours by
defining geometric primitives requires many parameters and
specific object models, for example flat and rectilinear roofs.
To be able to handle arbitrarily complex roof shapes, we in-
stead propose to form a measure that relates contours based
on similarity in position, orientation, and photometric and
chromatic properties [Henricsson and Stricker 1995].

Following [Henricsson and Stricker 1995], for each straight
contour segment we define two directional contours point-
ing in opposite directions. Two directional contours form a
contour relation with a fogically defined interior. For each
contour relation we compute four normalized scores based
on similarity in position, orientation, and in photometric and
chromatic attributes. The final similarity score of a contour
relation is the sum of the individual similarity components. A
high similarity score proposes that the two contours belong to
the same object boundary. A few selection procedures, which
are based on local competition on the computed similarity
scores, are subsequently applied to yield a small number of
similarity relations.

By relaxing the geometrical arrangement of two straight con-
tours, we can handle arbitrarily complex polygonal shapes.
These similarity relations are extensively used in coplanar
grouping (section 6.2) and to hypothesize the roof bound-
ary (section 6.3).

6 AUTOMATIC HOUSE RECONSTRUCTION

We present a novel approach to reconstruct complex residen-
tial houses from sets of aerial images. To solve this prob-
lem, we have developed a procedure that relies on hierarchi-
cal hypothesis generation, see Fig. 7. The procedure starts
with a multi-image coverage of a site, extracts 2-D edges
from a source image, computes corresponding photometric
and chromatic attributes, and their similarity relationships.
Using both geometry and photometry, it then computes the
3-D location of these edges and groups them to planes. In
addition, 2-D enclosures are extracted and combined with
the 3-D planes to instances of our roof primitive — the 3-D
patch. All extracted hypotheses of 3-D patches are ranked
according to their geometric quality. Finally, the best set of
3-D patches that are mutually consistent is retained, thus
defining the reconstructed house. This procedure has proven
powerful enough so that, in contrast to other approaches to
generic roof extraction, e.g. [Fua and Hanson 1991, Roux
and McKeown 1994, Lin et al. 1995, Haala and Hahn 1995,
Kim and Muller 1995], we need not assume the roofs to be
flat or rectilinear or use a parameterized building model.

Note that, even though geometric regularity is the key to
the recognition of man-made structures, imposing constraints
that are too tight, such as requiring that edges on a roof form
ninety degrees angles, would prevent the detection of many
structures that do not satisfy them perfectly. Conversely,
constraints that are too loose will lead to combinatorial ex-
plosion. Here we avoid both problems by working in 2-D and
3-D, grouping only edges that satisfy loose coplanarity con-
straints, and weak 2-D geometric and similarity constraints
on their photometric and chromatic attributes. None of these
constraints is very tight but, because we pool a lot of infor-
mation from multiple images, we are able to retain only valid
object candidates.

2-D Framework 3-D Framework

T S—

Segment Matching
Contour
Relations
¥

Coplanar Grouping
Relations Graph

. '
@~ 3D CAD Model

Figure 7: A hijerarchical framework, a feed-forward scheme,
where several components in the 2-D scheme mutually ex-
change data and aggregates with the 3-D modules.

We view the contribution of this approach as the ability to
robustly combine information derived from edges, photomet-
ric and chromatic area properties, geometry and stereo, to
generate well organized 3-D data structures describing com-
plex objects while keeping the combinatorics under control.
Of particular importance is the tight coupling of 2-D and 3-D
analysis. In section 5 we described the 2-D framework, and
in the following sections we present the 3-D framework and
the combination of 2-D and 3-D processing.

6.1 Segment Stereo Matching

Many methods for edge-based stereo matching rely on ex-
tracting straight 2-D edges from images and then matching
them. These methods, although fast, they have one draw-
back: if an edge extracted from one image is occluded or
only partially defined in one of the other images, it may
not be matched. In outdoor scenes, this happens often, for
example when shadows cut edges. Another class of meth-
ods [Baltsavias 1991] consists of moving a template along the
epipolar line to find correspondences. This can be extended
through the introduction of camera models and geometri-
cal constraints to a multi-image (feature/template based)
matching technique. Very promising results have been ob-
tained with this approach in close range applications [Griin
and Stallmann 1991]. It is much closer to correlation-based
stereo and reduces the problem described above. We pro-
pose a variant of the latter approach for segment matching
[Bignone 1995]. Edges are extracted with the methods in
section 5 from only one image (the source image) and are
matched in the other three images by maximizing an “edgi-
ness measure” along the epipolar line. The edginess measure
is a function of the gradient in the other images. Geometric
and photometric constraints are also used to reduce the num-
ber of mismatches. Each matched 3-D segment has a virtual
link to its generating 2-D contour, and vice versa.

The photometric constraint consists of computing the pho-
tometric region attributes as defined in section 5.2 after a
photometric equalization of the images. The photometric
consistency means that the photometry in areas that per-
tains to at least one side of the correspondences should be
similar across images. Figure 8A shows all 78 computed 3-D
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segments of the house in Fig. 6. The details of the algorithm
are described in [Bignone 1995].

A more classical approach in stereo matching is under de-
velopment. This approach simultaneously matches the edges
extracted from the four images. To cope with both broken
edges and edges with different length, epipolar stripes are de-
fined to first of all relax the epipolar constraint and secondly
to reduce the search space. Similar to the above approach,
geometric and photometric constraints are used to reduce the
number of false matches. The preliminary result of the new
stereo matching is shown in Fig. 8B.

=

(A) (B)

Figure 8: (A) the matched 3-D segments (notice the false
matches), using the edginess approach, and (B) the novel
simultaneous stereo matching among all four images. Notice
that the new results are more complete than the old ones.

6.2 Coplanar Grouping of 3-D Segments

To group 3-D segments into planes, we propose a simple
method that accounts for outliers in the data [Bignone 1995].
The proposed method explicitly uses the similarity relations
from section 5.3 to drive the algorithm. This has the advan-
tage that we only extract planes that are somehow related to
similar 2-D contours and hence we largely reduce the number
of mismatches in the extracted planes. The algorithm pro-
ceeds in two steps similar to the procedure in [Stricker and
Leonardis 1995]:

Explore: The exploration generates an initial set of hypothe-
ses. Given the similarity relationships of section 5.3 and
the 3-D geometry of the segments, planes are fitted to
pairs of related contours that are roughly coplanar. The
support of those planes are then extended by iteratively
including segments that are related to the hypothesis
and that are close enough to the plane. After each iter-
ation the plane parameters are re-approximated.

Merge: The exploration produces a set of plane hypotheses.
Because all the contours belonging to the same physical
plane may not be related in the sense of section 5.3, this
plane may give rise to several hypotheses that must be
merged. This is done by performing a statistical test on
pairs of parallel planar hypotheses to check whether or
not they describe the same plane.

For the house in Fig. 8A the exploration instantiated 13 planes
and after the merging step only 6 remained. The 2-D con-
tours of the extracted planes are shown in Fig. 9. A plane
consists of a number of 3-D segments, most of which are cor-
rectly matched and belong to a planar object part. In Fig. 9,
plane E is vertical and plane F consists of a correctly matched
contour and a false match (the 2-D contour on the ground).
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Figure 9: The result of grouping the 3-D segments in Fig. 8A
to planes. Plane D consists of two 3-D segments.

As we are interested in the outer boundary of the roofs, we
regard those correctly matched 3-D segments that lie inside
the roof as disturbances. For example, the shadow contours
on plane A and the roof window in plane B, although cor-
rectly matched, do not represent 3-D segments of the roof
boundary. It is not possible to exclude these disturbing 3-
D segments until we have inferred the object boundary of
each plane. Some of the planes in Fig. 9 are rejected in the
reconstruction of the house, see section 6.4.

6.3 Extract and Select 2-D Enclosures

In the preceding section we described an algorithm that
groups 3-D segments into planes. The results in Fig. 9
clearly demonstrate that, in most cases, only a subset of
all segments on each plane actually represents the outer
boundary of a roof. Furthermore, the planes are often in-
complete due to false matches or when the matching algo-
rithm does not find good correspondences for the 2-D con-
tours. The extracted planes themselves are therefore not
sufficient to describe the roofs. We therefore need an ad-
ditional procedure which is capable of inferring the outer
boundary of the extracted planes and then rank them accord-
ing to simple shape criteria [Henricsson and Stricker 1995,
Bignone et al. 1996].

We propose a graph-based approach similar to [Kim and
Muller 1995, Fua and Hanson 1991]. Each similarity rela-
tion of section 5.3 defines a node in a relations graph, and
compatible nodes represent the graph arcs. A cycle in the
graph corresponds to a closed boundary in the image. The
strategy consists of grouping related 2-D contours to form
2-D enclosures, thereby using the 2-D contours belonging to
the extracted planes to initialize the enclosure finding algo-
rithm. Each 2-D enclosure hypothesizes the boundary for the
corresponding plane. The boundaries of the vertical planes
are often not entirely visible in single images, hence, we ex-
clude the vertical planes right from the beginning. The tight
coupling between the 2-D and 3-D processes plays an im-
portant role since we do not need to find all possible 2-D
enclosures, only those that overlap with non-vertical planes.
The major reason for grouping in 2-D instead of in 3-D is that
additional and more complete information is available in 2-D.
For example, in 2-D all straight 2-D contours, their photo-
metric and chromatic attributes and the computed similarity
relations are available.
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It is not possible to extract the best enclosure among alter-
natives without considering the neighboring planes and their
enclosures. Instead of selecting the best enclosure for each
plane we propose to rank the enclosures within each plane
according to simple criteria. This is a first important step
towards the assembly of 2-D enclosures and planes to form
hypotheses of 3-D patches. We assume that each planar part
of the roof has a large area, a simple shape, and a large
overlap between the contours in the 2-D enclosure and the
corresponding 3-D segments of the plane. These three cri-
teria allow us to describe the larger structures of a roof. As
we are only interested in ranking the enclosures within each
plane, we propose a score for each enclosure, which consists of
the product of three relative components: 3-D completeness,
relative enclosed area, and relative shape simplicity [Bignone
et al. 1996].

Figure 10 shows a few extracted 2-D enclosures for the larger
planes of the house in Fig. 8A. The algorithm extracted 279
enclosures for the six planes.

Plane A iPlane B

0.330 0.295

7

0.545

PlaneD

00

0.385

R |

0.491

Figure 10: A few representative 2-D enclosures for the planes
A, B, D, and F in Fig. 9 with their corresponding scores.

6.4 Assembling Planes and Enclosures to Roofs

Each 2-D enclosure describes a possible boundary description
of the corresponding plane. One 2-D enclosure together with
one plane form a hypothesis of a 3-D patch. It is reasonable
to assume that roofs of residential houses are constructed of
adjoining planes. For this reason, only hypotheses of 3-D
patches that consistently adjoin with other 3-D patches with
respect to the intersection of their planes are retained. In
addition, we require that the 2-D contours, that belong to
the intersection, are collinear in 2-D. Those 3-D patches that
fulfill these constraints are consistent. For example, the 2-D
enclosure with the highest score for plane B in Fig. 10, is not
consistent and is therefore excluded.

The iterative procedure initially selects a subset of 3-D
patches and verifies the total consistency along the bound-
aries. If one or more 3-D patches do not fulfill this check,
they are rejected and new 3-D patches are selected. The
first subset of 3-D patches that produce a total consistency
among all intersections is the final result. The order of selec-
tion is based on the above enclosure score. To obtain the 3-D
coordinates of those contours that are contained in the 2-D
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enclosure but not on the plane, we project their endpoints
onto the plane. The result is a complete 3-D boundary for
each plane that is likely to describe a roof. Finally, we add ar-
tificial vertical walls to the reconstructed roof. The heights of
the vertical walls are estimated through the available digital
terrain model.

Figure 11C,D show the reconstructed houses in Fig. 11A,B.
Notice, that only two planes from Fig. 9 were retained for
the final reconstruction. In Fig. 11E,F we superimpose the
manually measured CAD model with ours to show the quality
of the reconstruction. The accuracy and completeness of the
reconstruction will be evaluated in future work.

Figure 11: The results of the reconstruction. (A-B) the origi-
nal images, (C-D) the reconstructed houses in 3-D and (E-F)
the manually measured CAD model (white) overlaid on our
reconstruction (black).

In Fig. 12 we present our results on the entire residential
scene. Eleven of the thirteen roofs are extracted, ten of
them with a high degree of accuracy and completeness. The
marked house to the right is not complete, since the algorithm
fails to extract the two triangular shaped planes, however, the
corresponding 2-D enclosures are correctly extracted. The al-
gorithm fails to extract the two upper left houses. The lower
of the two is under construction and should not be included
in the performance analysis. The upper house is complicated
because a bunch of trees cast large shadows on the right roof
part. Because of these shadows the algorithm fails to find the
corresponding plane, however, the left roof part is correctly
reconstructed.
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Figure 12: The result of of the 3-D reconstruction on all
houses in the scene of Fig. 5A. The artificial vertical walls are
added and projected down to the ground. The ground height
is estimated through the digital terrain model (DTM). The
marked house is not complete, since two triangular patches
are missing.

7 RULE-BASED SPATIAL REASONING

In a parallel approach [Willuhn and Ade 1996] we want to in-
corporate domain-specific knowledge about houses and house
roofs into the reconstruction process. We think this step is
necessary because, (1) the system should be able to deter-
mine the degree of confidence that the reconstructed object
is really a house and (2) some peculiarities due to practical
or architectural considerations are common in the construc-
tion of houses and should be taken into account. Additional
constraints, such that decisions take place at all levels of pro-
cessing, and that previously executed processes may be re-run
whenever problems at higher levels occur, imply that we need
a system more general than the standard bottom-up. We
propose a system that is capable of iteratively activating pro-
cedures at different levels and based on a uniform knowledge
representation. We have chosen a blackboard architecture
with a semantic network as knowledge representation. Due
to the variety of possible roof shapes, all knowledge has been
coded into rules which have been categorized into the feature,
the structure, and the conceptual level. So far only rules at
the structure level have been implemented. The generated
data from sections 5 and 6.1, i.e. contours, including their
attributes and relations, as well as the 3-D contours and the
planes are used as initial knowledge in the blackboard.

8 FUTURE WORK

Future work of AMOBE includes not only improvement of
each individual component, whenever possible, but also sys-
tem related and conceptual improvements.

For example, we would like to integrate the operator more
actively into the system, especially, for those tasks where the
user instantly can provide approximations, or model or con-
textual knowledge. So far the operator has only been incor-
porated in the building detection phase. This minimal user
interaction works well for the Avenches residential data set,
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however, in urban scenery fully automatic techniques need to
be augmented with operator guidance, at least in the critical
phases of the processing.

Up to now the color classification and combination with other
cues was performed on only one image. in future investiga-
tions all available overlapping images will be used to test the
improvement of the classification. Furthermore, our investi-
gations indicate that the building detection is better when
more object classes are detected simultaneously. The combi-
nation of multiple cues makes such a detection feasible, and
a possible extension of our research could be in the detec-
tion of all major classes: water, dense forest, separated trees,
grass, bare soil, roads and other paved spaces, buildings and
shadows. The detection of just trees, buildings and water is
important for the reduction of a DSM to a DTM.

The interaction between 2-D and 3-D processing has proven
extremely useful, however, its full potential has not yet been
investigated. Closely related to the interaction between 2-D
and 3-D is the explicit or implicit use of object models. The
issues of object modeling has to be investigated further [Ma-
son 1996]. In future work we will validate our algorithms on
other data, such as industrial and dense urban scenes. We
also plan to improve the data flow by integrating the individ-
ual software modules under one joint system.

9 CONCLUSIONS

In this paper we have presented our strategies, the current
status of research, and made an outlook onto future work.
In the project, we have focused on the 3-D reconstruction of
residential houses, as being the most prominent man-made
objects in high-resolution aerial images. The approach is
highly data-driven, exploits both 2-D and 3-D processing, and
reconstructs roofs of houses directly in 3-D. This approach
has proven powerful enough so that, in contrast to other ap-
proaches of generic roof reconstruction, we can handle more
difficult and varying houses.

We have further shown how digital surface models and color
classification can be combined to detect buildings and in ad-
dition, to provide a coarse description of the buildings. As an
alternative approach to house reconstruction, we have also
reported on a rule-based system, which is built on a black-
board architecture.

The current status of AMOBE is indeed promising and future
undertakings will most certainly profit from the ideas and
results presented here.
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