A SURVEY ON BOUNDARY DELINEATION METHODS

Mathias J.P.M. Lemmens
Faculty of Geodetic Engineering
Delft University of Technology

The Netherlands
lemmens@geo.tudelft.ni

Commision I, Working Group 3

KEY WORDS: Photogrammetry, Remote Sensing, Feature, Edge, Extraction, Status, Theory

ABSTRACT

The importance of boundary delineation is indicated by the large amount of literature devoted to the topic. Although subject
of intensive research the last three decades the problem is still poorly understood and largely unsolved. Main reasons for failing
are that the image models underlying the design of these schemes form a poor description of the actual data set, and that
the relationship between data and required information can be modeled only very weakly. The aim of the present paper is to
structure the massive volume of edge detection approaches and to arrive at insight into their major merits and shortcomings.
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Introduction

The role of delineation of boundaries is crucial for a broad
range of geo information related activities, such as semi-
automatic mapping, GlIS-updating, stereo-matching, and
object-based multispectral classification. Anyone who has
been involved in the extraction of objects from unrestricted
scenes, such as recorded by aerial and space imagery, will have
encountered difficulties with obtaining reliable object outlin-
ings. Indeed, one of the key problems that makes realization
of the above tasks so hard is the outlining of boundaries. Al-
though several attempts have been undertaken to put edge
detection in a more rigorous mathematical framework, in-
cluding: Brooks (1978), Marr & Hildreth (1980), Haralick
& Watson (1981), Hildreth (1983), Canny (1986), Nalwa &
Binford (1986), and Torre & Poggio (1986), a coherent the-
ory could not be developed. No general algorithms which can
be applied successfully on all types of images, have emerged.
The relative merits and characteristics of the many individual
methods when applied to unrestricted real-world scenes are
not at all clear. Numerous legends circulate about the -rei-
ative merits of different operators (Fleck, 1992). Therefore,
the choice of a particular edge detection scheme seems to
be more based on the appreciation and preoccupation of the
user than on the real capabilities of the scheme. Our aim is to
structure the existing methods and to examine their merits,
based on our extensive experience on the subject (Lemmens,
1996). Existing surveys can be subdivided into those solely
devoted to edge detection, including: (Davis, 1975; Levialdi,
1981; Peli & Malah, 1982) and the ones which discuss seg-
mentation more generally, including: (Fu & Mui, 1981; Har-
alick & Shapiro, 1985; Pal & Pal, 1993). Furthermore regular
textbooks (e.g. Rosenfeld & Kak, 1982; Pratt, 1991; Ballard
& Brown, 1982; Davies, 1990) present introductions. Seg-
mentation schemes may be divided into three main categories
(Fu & Mui, 1981; Sonka et al., 1993): (1) characteristic fea-
ture thresholding or clustering, (2) region extraction, and (3)
edge finding. We focus here on edge finding, and more specif-
ically, on local edge detection schemes.

2 Edge Finding Process

Basicly edge finding schemes consist of (1) edge detection,
and (2) edge localization. The edge detection part, which is
the hard problem and is therefore considered here solely, con-
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sists of four steps: (1) smoothing, (2) local edge detection,
(3) thresholding and thinning, and (4) edge linking.

In general, local edge detection is based on some form of
differentiation of the local grey value function. Since dif-
ferentiation is a mildly ill-posed problem (Torre & Poggio,
1986) smoothing is often applied beforehand for regulariza-
tion purposes. Nevertheless, smoothing should be avoided,
when possible, since linear smoothing tends (1) to blur the
weak edges, (2) to reduce the localization accuracy, and 3)
to merge closely spaced edges, while non-linear smoothing fil-
ters, such as the Kuwahara and the median filter, tend to dis-
locate edges and to remove thin, line-shaped objects such as
roads. Furthermore, smoothing introduces correlation among
the observations which may deteriorate the performance of
subsequent processing steps.

Thresholding is a decision process in which the label edge or
non-edge is assigned to each pixel, based on the response of
the local edge detector. Usually the response is tested against
one or more prespecified thresholds. These thresholds may be
determined on an heuristical basis or by a quantification of
image disturbances such as noise.

Due to the spatial extent of local edge operators, the ini-
tial edge map is in general not one pixel thick. Thinning is
necessary to obtain one pixel thick ourlinings. One of the
possibilities is to use, after thresholding, a skeletonizing algo-
rithm to erode the thick edges. To obtain higher localization
precision one may use, before thresholding, non-maximum
suppression to exclude a pixel as edge if its edge response is
lower than those of the neighbouring pixels located perpen-
dicular to its gradient direction. The disadvantage is that
Jjunction pixels may be deleted too. Lacroix (1988) proposes
a remedy by allowing edge pixels to form relative maxima,
i.e. real edge pixels are permitted to have pixels with higher
responses in their vicinity as long as there are sufficient pixels
in the neighbourhood with lower responses.

Finally, the edge pixels are linked to form a boundary of con-
nected pixels, that may be generalized and vectorized in a
postprocessing stage for storage in, for example, a GIS. To
obtain more reliable results one may examine the operator
responses in a neighbourhood of connected pixels, using con-
text information.
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3 Boundaries

What constitutes a boundary? Since the human visual system
is so highly sophisticated, this seems to be a trivial question.
However, a large problem in boundary detection is obtaining a
suitable definition of a boundary which is generally applicable.
Definitions can be given in two domains: (1) image domain,
and (2) task domain. Within the image domain the most
important feature that may represent a boundary is the edge:

An edge is an intensity discontinuity in the image.

in course of time an abundance of algorithms have been de-
veloped, designed to trace local intensity discontinuities in
the image. We treat some of them in sections 4 and 5.

The objects one wants to extract, depend on the task do-
main at hand. For example, for a large scale base map of
an urban area one wants other objects than for a national
road data base. This observation results in the important
understanding that a perfect outlining of relevant objects in
aerial and space imagery can not be established by bottom-up
approaches alone. We define a boundary as:

A boundary is a (closed) outlining of an object
which is relevant for the task at hand.

A common preassumption is that ‘abrupt intensity changes in
the image correspond to meaningful object boundaries in the
scene. This may be valid for highly restricted scenes, such
as present in industrial environments, but for unrestricted
scenes, a boundary may be visible in the image as abrupt in-
tensity changes, but this is neither a necessary nor a sufficient
condition. Not all intensity changes correspond with relevant
object outlinings. They may be, for example, due to noise,
texture and shadows. Furthermore, boundaries may not show
up as intensity changes, due to low contrast or occlusion. To
resolve this problem a priori information about the objects
relevant to the task domain is necessary. This information
can concern radiometric and geometric properties. ‘

The éxploration of radiometric properties is.carried out regu-
larly by the remote sensing community for multispectral aerial
and space imagery by statistical pattern recognition tech-
niques using as features (functions of) the grey values of the
different spectral bands. However, pixel-based classification
is-highly prone to error, resulting in the wish of developing
object-based classification techniques, which require, at turn,
reliable delineation of objects.

Geometric properties may concern generic or specific aspects.
Generic geometric aspects concern descriptions of general ap-
pearances of boundaries, such as: (1) smooth continuation,
i.e. nearby edge pixels will point approximately in the same
direction, (2) thinness, e.g. edges should be one pixel thick,
which criterion is often necessary for further processing, and
(3) connectivity, e.g. boundaries will be closed. A classical
mechanism to incorporate generic geometric information is
by probabilistic relaxation (e.g. Schachter et al., 1977; Pe-
leg, 1980; Prager, 1980; Hancock & Kittler, 1990; Duncan
& Birkhdlzer, 1992). For edge detection purposes on images
of unrestricted scenes this mechanism shows several severe
drawbacks.

Specific geometric information concerns more detailed de-
scriptions about the shape and possibly size of the bound-
aries, for example, the objects of interest have circular or
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rectangular boundaries. The exploration of specific geomet-
ric information has been subject of extensive research. For
example the Hough transform (for a good survey with many
references, see lllingworth & Kittler (1988)), boundary de-
lineation by dynamic programming ( e.g. Montanari, 1971;
Martelli, 1976; Elliott & Srinivasan, 1981; Gerbrands, 1988;
Lemmens et al., 1990), and perceptual grouping (e.g. Witkin
& Tenenbaum, 1986; Khan & Gillies, 1992; Lu & Agger-
wal, 1992; Mohan & Nevatia, 1992; Price & Huertas, 1992;
Lin et al, 1995) are well-known approaches. Lemmens et al.
(1990) suggested to use dynamic programming for road de-
tection. Within the photogrammetric community De Gunst
et al. (1991), and Griin & Li (1994) explored the approach
for this purpose.

We focus in the sequel on local edge detection schemes, be-
cause they form the fundamental stage in any boundary de-
lineation task. We loosely divide them into two broad classes:
(1) monadic schemes and (2) plural schemes. Monadic
schemes base the decision whether an edge is present or not,
directly on the responses of the operators, without further ex-
amination of additional responses, while plural schemes carry
out such an evaluation in some form.

4 Monadic Local Edge Detection

A local edge detector is an operator of small spatial extent
that traces changes in the image function to classify each
pixel as edge or non-edge according to some decision rule. No
a priori information about the scene structure or contextual
information is employed. Monadic methods can be generally
classified into one of four categories: (1) Differentiation, (2)
Surface fitting, (3) Template matching, and (4) Curvature
determination. Other approaches have been proposed, such
as those based on morphological operators (cf. Lee et al.
1987). We do not treat them here.

4.1 Discrete Differentiation

Abrupt intensity changes are traceable by computing the
partial derivatives in two orthogonal directions: gg
dg/0z; gy = 0g/dy), usually along the grid lines. The small-
est step possible on a sampled space is the sample interval
Az. By definition the pixel size is unity: Az = 1. Hence the
discrete derivative in z-direction of the 2-D discrete function
g becomes:

gz = limaz—i[g(5 +Az) —g(5)]/Az =g(G+1)—g(5) (1)

Accordingly one can define gy, the first derivative in y-
direction. (For the Roberts operator g, and g, become:
9o = g(1,5+1)—g(i+1,4); gy = g(¢,5)—g(i+1,5+1).) The
edges located by the gradient components according Eq.(1)
are situated at the grid lines yielding interpixel (crack) edges.
The computation can be done by convolving g with the masks
[~11] and [—1 1]7, where T' denotes the transpose. These
above masks are not symmetrically positioned. To evade this
we may choose the central derivative:

9o = limas—2[g(j + 2Az) — g(j — +Az]/Az

which results in: go = 2[g(j +1) —g(j — 1)]. Accordingly g,
is defined. The computation of g, and g, can now be done
by convolving g with the masks [-1 0 1] and [-1 0 1]7,
respectively. The orientation of the edge is defined by:
8 = arctan g, /g +1/2m, and the edge strength (magnitude)
by: M1 = \/g% + g5. Alternative definitions of edge strength
that bypass squaring and square rooting reducing computa-

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996



tion time, are the Manhattan distance: M2 = |gz| + |gy/,
and the chess-board distance: M3 = max(|gz],|gy]). The
magnitude and edge direction show a directional bias; they
depend on the orientation of the edge with respect to the
grid. For example the magnitude error of the Sobel opera-
tor may reach 7.93 % and the angle error 2.90 degrees for
ideal step edges, while the magnitude error of the Prewitt
operator may even reach 12.87 % and the angle error 7.43
degrees (Lyvers & Mitchell, 1988). To replace M, by M, or
M3 is disadvantageous since the orientation dependent bias
is more severe for the last two measures. M; corresponds
to template matching with just two hypothesized directions
(section 4.3). The gradient components |g.| and |g,| will
occupy only a limited grey value range -typically in the range
of the grey values when properly normalized- which is usu-
ally in the range 0-255. Therefore, when using the Euclidean
distance M1, one may save computation time by precomput-
ing all edge strengths that may occur and to store them in a
look-up table. Although the Prewitt (1970) operator is de-
rived from a surface fitting approach (section 4.2), its 3 x 3
version can also be understood as combining discrete differ-
entiation with an unweighted smoothing perpendicular to the
direction over which the gradient is computed, i.e. horizontal
gradient component: [—1 0 1]*[1 & 1}7, and vertical compo-
nent: [~1 0 1]7 % [1 h 1], with & = 1 and * the convolution
sign. For the Sobel-operator & 2 and for the Isotropic
operator h = V2.

The Sobel operator has been shown to be superior to other
small support operators, like the 3 x 3 Prewitt operator. The
background of the Sobel operator is that the grey values that
flie closest to the central pixel become a higher weight than the
grey values which lie farther away, yielding good smoothing
properties.

Since also other features than edges show up as abrupt in-
tensity changes, e.g. noise and texture, differentiation ap-
proaches actually detect non-edges. When the response ex-
ceeds the prespecified threshold, it is assumed that the de-
tected grey value variability is due to the presence of an edge.
The early edge detection schemes, such as the Sobel opera-
tor, were developed on a more or less intuitive base, without
much mathematical foundation. When one wants to detect
a feature in a signal in a reliable way, two phenomena should
be at least employed: (1) a model of the appearance of the
feature in the signal, and (2) knowledge about corruption
of the signal with disturbances such as noise. Commonly,
edges are modeled as ideal step functions, i.e. two grey val-
ues are assumed to be present in the local neighbourhood.
The disturbances are usually modeled as additive zero-mean
Gaussian distribtued noise, uncorrelated with the signal. The
remaining part of this section treats methods based on such
image models.

4.2 Surface Fitting

In an attempt to make edge detectors more immune to non-
edge features, much research efforts has been devoted to
model explicitly how edges may look like in the local image
function. One of the results are surface fitting approaches.
The local image function is modeled as a set of basis func-
tions, that express the theoretical edge. The surface is fitted
to the local image function according some optimalization
norm, usually the L2-norm.

Prewitt (1970) -she was the first to suggest the surface fitting
idea- approximates the local image function by a second order
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polynomial: g(z,y) = ao + @17 + a2y + aszy + asz® + asy®
resulting, after a least squares fit, in a 3 x 3 neighbourhood
in the Prewitt masks discussed in the previous section.

The Hueckel (1973) method involves finding the parameters
of the best fitting ideal step edge, assuming two grey values
in a circular neighbourhood of 32 to 137 pixels. The fitting is
done by the L*-norm using a set of two-dimensional orthonor-
mal basis functions by a Fourier series in polar coordinates.
The expansion is truncated to eight terms for computational
and smoothing reasons.

O’Gorman (1976) modifies the approach of Hueckel, by using
Walsh functions, instead of sin/cos basis functions. The ra-
tionale governing this choice is that the discrete image space
bears a simple relationship to Walsh functions.

Ghosal & Mehrotra (1993) model an ideal step edge, assum-
ing the presence of two grey values, by a set of orthogonal
complex Zernike moments.

Haralick (1984) extents the polynomial approach of Prewitt
(1970), by suggested a zero-crossing edge detector based on
the facet model, introduced in Haralick (1980), using directed
second order derivatives.

4.3 Template Matching

Another approach to explicitly model the appearance of edges
is by using templates. Template matching for edge detection
purposes is the process of moving a two-dimensional tem-
plate, representing a prototype edge, over the entire image.
At every pixel the local image function over a-patch, which
has the same extent as the template, is compared with the
template. The elements of the templates can be chosen freely,
as long as they reflect the underlying edge model. It is conve-
nient to introduce normalized templates, in particular: semi-
normalized, normalized, and fully-normalized templates. Let
hi,1=1,...,n. be the elements of a template h.

A template is semi-normalized if the mean of the elements is
zero: ) ™" h; = 0. An example is shown in Figure 1a.

A template is normalized if the mean of the elements is
zero and its variance is m/(n. — 1), where m is the num-
ber of non-zero elements within the template: ) """ h; =
0; Yorr hi = m. An example is shown in Figure 1b. This
definition yields two consequences: (1) the template elements
can only take the values —1,0 and 1, and (2) the number of
elements that have value —1 equals the number of elements
with value 1. So, the number of same-signed values is %m.

A template is fully normalized if the mean of the elements is
0 and its variance is 1/(ns—1): 3 1% hi = 0; 5 " h? =1.
An example is shown in Figure 1c. To examine the presence

5 5 5 -1 0 1 -1 0 1
-3 0 -3 -1 0 1| 1 | -1 0 1
-3 -3 =3 -1 0 1 6 | —1 0 1
a b c
Figure 1:  Examples of normalized templates: (a) semi-

normalized, (b) normalized, (c) fully normalized.

of an edge at each pixel, multiple templates are needed. Each
template is associated with a hypothesized edge orientation.
Let there be K orientations and consequently K templates:
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hi,k = 1,..., K, then we denote the response of template
hy to an image patch g containing the grey values g; by:
Rgh, ..

Remarks

(1) The widely used edge and line detection templates en-
countered in literature fulfil the above defined normalization
conditions (see, e.g., Nevatia, 1982; Rosenfeld & Kak, 1982;
Davies, 1990; Pratt, 1991). For example, the eight masks
of the three level Robinson (1977) operator, are obtained by
permuting the mask coefficients of Figure 1b cyclically. In
the same way, cyclical permutation of the mask coefficients
of Figure 1a yields the eight masks of the Kirsch (1971) op-
erator.

(2) Each hypothesized edge direction requires a template.
The maximum response of all directional templates at a pixel
defines the edge strength at that pixel. The template pro-
ducing the largest response defines the edge direction.

(3) Because of the condition: )" ki = 0, the three types
of templates compute derivatives, h can contain both first
and higher order derivatives.

(4) The usual mask size is 3 x 3 pixels. Larger template masks
are less sensitive to noise and provide a denser division of the
edge direction compass-card. However, they require more
computational effort. Furthermore, when object density is
high, the response will be often a merged version of two or
more boundaries.

Depending on the underlying image and noise model, test
statistics on the template responses are (Lemmens, 1996):

maxic, [Rghy | > zaony/m
ma'Xi{:l IRghkl 2 tauby ,én Vi:bl._z

52462
2

ma'xﬁ’:l [Rghk| 2 ta,u\/”?l:
where z, is the critical value of the z-score, ¢4, the critical
value of the Student’s t-score, with « level of significance and
v the degrees of freedom. o2 is the variance of the image
noise, c‘rz is the variance of the grey values covered by the
template, and 2 and &2 are the variances of the grey values
at each side of the hypothesized boundary. It is assumed that
the templates hg, k = 1,..., K are normalized. To obtain
tests for semi-normalized templates replace the variable m by
Z::x hZ; for fully normalized templates this variable should
be replaced by 1.

4.4 Curvature Determination

The image function may be looked at as a two-dimensional
curved surface in 3-D space. The structure present in a land-
scape can be categorized into 8 principle surface types (see
e.g. Besl & Jain, 1988): (1) plane, (2) peak, (3) pit, (4)
ridge, (5) valley, (6) saddle ridge, (7) saddle valley, and (8)
minimal. These eight surfaces are uniquely determined by the
sign and value of the two principle curvatures.

It can be shown that the principle curvatures k; and k2 of
g(z,y) can be achieved by solving the quadratic form: x? —
"'(Qu + gyy) + oz yy — g:2ry = 0 leading to:

V

According to the definition of discrete differentiation, Eq.(1),

9zz — Jyy

Jzz + Gyy +
2

2
2 ) + g%y

K12 =
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using the masks [—1 1] and [—1 1]¥, we obtain:

9oz = g(z+1,9) —29(z,9) +g(z — 1,9)

gy = g(z,y+1)—29(z,y) +9(z,y - 1)

goy = gle+1L,y+1)—glz+1,y) —g(z,y+1)+g(z,y)
We may also fit through the local image function a sec-

ond order polynomial (see section 4.2) yielding: geo =
2a4; gyy = 2as5; goy = a3, and: Ky = as +as + D; k2 =
as +as — D, with D = \/(as — a5)? + a2. The parameters
ao, a1, 0az2, a3, as and as can be computed from a least-squares
adjustment.

The curvature approach is e.g. used by Dreschler & Nagel
(1982) for matching of image time sequences. The method
is sensitive to noise and texture due to the need to compute
second order derivatives.

4.% Final Remarks

Although the last three approaches (sections 4.2-4.4) model
explicitly the feature to be traced, they are essentially based
on differentiation of the local image function. Consequently,
the desired immunity to non-edge features is not at all war-
ranted. This yields low performance on images of non-
restricted scenes, where many other types of features than
edges may be present and where the image function is much
more complex than the ideal step edge/Gaussian noise model
that underlies the design of the majority of the schemes. Fur-
thermore, the derivation of many operators is done in the
continuous domain. Next, the filter is sampled, truncated,
and usually implemented with a small local support, often as
3 x 3 windows. As a consequence, the curious situation may
occur that operators that are derived along entirely different
theoretical lines, may result in the same convolution filters.

5 Plural Local Edge Detection

The plural methods we consider here are: (1) Marr-Hildreth
operator, (2) Canny operator, (3) Forstner operator, (4) Ed-
geness operator, (5) Cascade of local edge detectors, and (6)
Orientation coherence operator.

5.1 Marr-Hildreth Operator

The Marr-Hildreth (1980) operator is not primarily based on
any underlying image model but on a theory of the human
visual system, based on neurophysiological studies. We con-
sider here only the engineering aspects. The image is first
convolved with a Gaussian filter of which the blurring effect
is controlled by the scale parameter o. Next the edges are
detected as the zero-crossings of the rotation-invariant Lapla-
cian (V2?9 = guw + gyy). The conjunction of the Gaussian
with the Laplacian is called Laplacian of Gaussian (LOG).

The basic notion is that edges appear at a wide variety
of scales. Therefore, edges should be detected at several
amounts of blur, controlled by o of the Gaussian. The edges
detected at different scales are next combined to form the
"primal sketch”. This notion has resulted in the more general
signal analysis technique of scale space filtering, introduced
in the early 1980's by Witkin (1983), and further developed in
(Babaud et al. 1986; Bergholm, 1987; Perona & Malik, 1990;
Lindeberg, 1990; Zuerndorfer & Wakefield, 1990; Liu et al.,
1991; Lu & Jain, 1992). The essential idea is to embed the
original image in a family of derived images, the scale-space
g(z,y; o) obtained by convolving the original image g(z, y; 0)
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with a Gaussian kernel G(z,y;0) of standard deviation o,
the scale-space parameter, which describes the current level
of scale resolution: g(z,y;0) = g(z,y,0) * G(z,y;0). The
larger the value of o the coarser the resulting resolution and
the more the image is blurred. The choice of the Gaussian is
motivated by the fact that it is the only kernel in a broad class
of functions which satisfies adequate scale-space conditions
(Babaud et al. 1986): (1) causality: increase of o should not
generate spurious details and (2) homogeneity and isotropy:
the blurring is shift invariant and does not depend upon the
grey values. The Marr-Hildreth operator suffers from several
deficits:

Theoretically the zero-crossing contours are closed.
However, due to noise, texture and quantization ef-
fects, breaks may occur since the magnitude of the
pixel differences on the two-sides of a zero-crossing do
not exceed an acceptance threshold.

T-junctions or trihedral vertices are incorrectly de-
tected. Instead of 3 meeting zero-crossing lines 2 dis-
connected lines are detected, i.e. a spurious line is
detected. In general, at positions where the edges are
highly curves the zero crossings are located improperly.
The larger the width of the Gaussian, the larger this
effect.

Gaussian smoothing causes merging of closely spaced
edges, resulting in the detection of phantom edges. For
example, a set of parallel edges may be joined to one
edge after convolution with the Gaussian.

A good method to combine the results at different
scales is lacking.

Since the Laplacian is a second derivative operator, the
operator is sensitive to noise. (A nonlinear Laplacian
for use on noisy images has been developed by van
Vliet et al. (1989)).

5.2 Canny Edge Detector

Canny (1986) formulates edge detection as an optimization
problem and derives optimal filters for the detection of step
edges in the presence of Gaussian noise. The product of SNR
and the localization measure in one-dimension is optimized,
using as performance criteria: 1) good detection, 2) good
localization, and 3) only one response to a single edge should
appear. The steps of the scheme are:

1. Filtering of the image to smooth the effects of noise
and to produce a multiscale representation of the image
data. For computational reasons a suboptimal Gaus-
sian filter is chosen.

Differentiation by taking directional first derivatives us-
ing templates at an interval of 30°.

. Non-maxima suppression by interpolating gradient vec-
tors in a 3 x 3 neighbourhood.

. Multithreshold hysteresis linking which draws on in-
formation concerning edge-connectivity. Edge-pixels
are initially labeled if their response exceeds a high-
threshold value. Pixels lying above a weaker response
threshold are then admitted provided they belong to
edge-segments which are connected to the initially la-
beled pixels. Finally, unconnected high-response pixels
are deleted.
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Although the Canny operator may remove genuine high-
frequency edge-features such as corners, its performance is
good. This is, however, not due to its optimal design for
step edges embedded in Gaussian noise, but is based on the
use of local context (generic geometric) information in step
4. Based on the Canny approach Petrou & Kittler (1991)
developed an optimal detector for ramp edges.

5.3 Farstner Operator

The Forstner (1986, 1993, 1994) operator, which is well-
known within the photogrammetric community as interest
operator for feature-based matching, is based on examination
of a small set of connected gradient components g, and gy,
enabling to distinguish isotropic structure such as blobs, cor-
ners, and texture from non-isotropic structure such as edges
and lines (e.g. roads). The operator requires two thresholds:
one on the strength of the averaged squared gradients to de-
cide upon the presence of a feature; if a feature is present, the
other threshold is to decide whether the feature is isotropic
or non-isotropic. Based on this scheme Férstner (1994) de-
veloped a framework for low level feature extraction.

5.4 Edgeness Operator

In the template approach (section 4.3), the maximum of the
responses is taken as edge measure. The relationships among
the directional template responses are not taken into account,
although they may give an essential point whether the re-
sponse is due to noise and texture or to the presence of a real
edge pixel. A scheme that is able to carry out such a coher-
ence examination is developed by Cheng (1990). The basic
notion of this edgeness operator is as follows. If an edge
is present the responses of the templates in subsequent di-
rections, starting from the template oriented along the edge,
will be monotonically decreasing and will show symmetry. For
noisy pixels this systematics will be absent. If the maximum of
the template responses exceeds a threshold and all responses
show sufficient systematics, the presence of an edge is ac-
cepted. The scheme is especially developed for use on radar
images. An extensive analysis carried out in Lemmens (1996)
shows that the operator, using 5 x 5 templates, performs very
well on images heavily corrupted by noise and/or texture.

5.5 Cascade of Local Edge Detectors

Usually, one out of the many local edge detectors is applied.
However, one may employ several edge detectors in sequence
to improve quality and/or to reduce the computational costs.
McLean & Jernigan (1988) developed in such away a fast
scheme for real time processing of large images. The basic
idea is to use in a first stage a time efficient operator that
indicates pixels of interest. A simple cross operator over the
diagonals (mask: [-1 0 1]) may suffice. This operator may
classify non-edge pixels as pixels of interest but the number of
edges that are wrongly not detected should be preferable zero,
since this type of misclassification can not be corrected in a
subsequent stage. Next the pixels of interest are considered
more thoroughly by a more sophisticated operator. Tan &
Loh (1993) make the above approach still more efficient by
using in addition multiple resolutions by establishing an image
pyramid, however at the cost of missing closely spaced edges.
It will be obvious that cascades of operators may be realized
in many ways.
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5.6 Edge Orientation Coherence

The basic notion governing edge orientation coherence ap-
proaches is that neighbouring pixels positioned on an edge will
approximately show equal orientation (cf. Gregson, 1993).
Therefore one may examine the gradient directions of the
pixels. This can be done along the following line:

1. Compute the mean and the variance of the directions
of the gradients in a local neighbourhood (e.g. a 3 x 3
window) of which the magnitude is above a predefined
threshold;

. Decide whether the orientations of all gradients point
sufficiently well into the same direction on basis of the
computed variance and an a priori variance measure
derived from the edge orientation bias introduced by
the detector and a noise estimate, using and F-test.

. M the computed variance indicates that all orientations
are the same, assign to the central pixel the mean of
the directions of the gradients.

It is possible to refine the above process, by removing the
outliers step by step and by examining whether the remain-
ing orientations point in the same direction and are spatial
connected in such a way that they form likely an edge.

6 Discussion

v/ The apparently simple problem of locating edges in an
image has proved to be very difficult and-is still poorly under-
stood. There probably exists virtually no mathematical ap-
proach or trick that has been remained untouched to tackle
the boundary delineation problem, which is an indication of
its intricacy. Optimal methods based on thorough theoret-
ical considerations reveal to produce poor results on aerial
and satellite images, due to the fact that the underlying as-
sumptions about the data are often violated. In particular
the design of many of the (optimal) edge detection schemes
are based on assumptions, which are unrealistic for images of
non-restricted scenes, including: (1) the image contains only
ideal step edges embedded in zero-mean Gaussian distributed
noise, (2) the image may be described as an analytical func-
tion, (3) the only intensity changes are locally straight step
edges, (4) intensity varies linearly in the direction perpendic-
ular to the edge, (5) edges are broadly spaced, and (6) abrupt
intensity changes in the image correspond to meaningful ob-
ject boundaries in the scene. One of the main reasons for fail-
ing is that local edge detectors can not discriminate among
the many types of features that may be present in the image.
Even in noisy and texture areas, high responses will occur.

+/ The above weaknesses of edge detection schemes com-
bined with the fact that the boundary delineation problem
is task-domain dependent results in the inevitable conclusion
that the exploration of specific geometric object information
is indispensable to arrive at reliable boundary outlinings. This
conclusion introduces questions like: how to obtain adequate
descriptions of specific geometric constraints?, and how to
match these constraints with the image function?

+/ The main reasons why so many edge detection schemes
could emerge, are: (1) the broad variety of mathematical
principles and tricks that can be used to base an edge detector
on, and (2) existing techniques are often not suited for the
particular task the researcher has at hand, forcing to search
for other methods resulting in a new approach.
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4/ It is remarkable that the performance of the many local
edge detectors, whether they are based on heuristic grounds
or on rigorous mathematical considerations, does not exhibit
expressive differences. The choice of the type of preprocess-
ing (smoothing) and the type of postprocessing, in particular
context incorporation, reveals to be actually more important
for the final result than the choice of a particular local edge
detector.
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