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ABSTRACT

This paper describes the use of a bundle adjustment with geometric constraints to evaluate feature matches and geometric
assumptions, based on the use of reliability statistics. Our evaluation procedure starts with the smallest possible redundant
geometric subsets of the object, (e.g., one right-angle corner of a rectangular building), finds consistent feature matches
among them, and then combines the consistent matches into larger geometric entities and continues the evaluation. We derive
statistics to verify the geometric assumptions used in the solution and demonstrate their use to detect erroneous geometric

constraints.

1 MOTIVATION

Our goal is the automated and semi-automated construction
of accurate three-dimensional site models from multiple im-
ages. Several of our site modeling systems, such as SiteCity
[Hsieh, 1996; Hsieh, 1995], MultiView [Roux and McKeown,
1994a; Roux et al., 1995], and PIVOT [Shufelt, 1996a], use a
hypothesize-and-test paradigm, in which a large set of object
hypotheses is generated, then evaluated to extract the best
descriptions of cartographic features in the scene. Evaluation
methods have typically been based on image intensity, edge
geometry, or shadow identification [Shufelt and McKeown,
1993] or on image geometry [McGlone and Shufelt, 1993].

Methods using image and scene geometry are especially pow-
erful, since the geometry is independent of image intensity
properties and can be established from information sources
outside the image. We have been developing techniques to
utilize the geometric information more fully, built around a
bundle adjustment with object-space geometric constraints
and which calculates a complete set of evaluation statistics.
While the use of geometric constraints in a bundle adjust-
ment is not a new technology, most previous applications
have been concerned with the determination of sensor orien-
tations [Mikhail, 1970; McGlone and Mikhail, 1982]. We in-
tend to use the geometrically-constrained bundle adjustment
to provide a rigorous evaluation procedure, both for feature
matches and for object-space geometric assumptions.

The distinction between feature match verification and geo-
metric hypothesis verification is an important one. Verifica-
tion of a match means that the features identified on each
image all correspond to the same physical point in object
space. On the other hand, verification of a geometric hy-
pothesis means that the features involved, whether they are
lines, points, or planes, or other shapes, actually have the
specified object-space configurations. For instance, four ob-
ject space points may be correctly identified on all images,
but may be incorrectly specified to be coplanar.

The verification of point matches is equivalent to the test-
ing of point measurements for blunders, using standard data
snooping techniques [Forstner, 1985]x the addition of geo-

metric constraints makes such testing much more effective
[McGlone, 1995]. However, the evaluation of geometric hy-
potheses, as expressed by geometric constraints in the bun-
dle adjustment, requires the extension of standard statistical
techniques. The derivation of such statistics is discussed in
the next section. The following sections then discuss the ap-

_plication of reliability statistics and geometric constraints to
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evaluating feature matches and to evaluating the reliability
of the geometric information itself.

2 CONSTRAINT RELIABILITY

A large body of work in recent years has been concerned with
the derivation and interpretation of reliability statistics for
point measurements in traditional photogrammetric applica-
tions [Forstner, 1985]. These techniques can be applied in
a straightforward manner to the matching of point features,
where corresponding images of an object must be identified
across multiple images.

However, our work involves extracting and modeling com-
plex objects, using their geometry to help us in the process.
We want to use this geometric information to assist in the
rigorous evaluation of our building hypotheses. As described
below, the unified approach to least squares adjustment gives
us this capability.

2.1 Mathematical basis

The detection of blunders is based upon the examination of
residuals; therefore, we want to quantify the effect of a blun-
der on the residuals from an adjustment. For the classical
case of least squares adjustment, the partial derivative of the
residuals with respect to the input observations is [Forstner,
1987]:

Av

RAy = —Quw WAY (1)
The R matrix in equation 1 is called the redundancy matrix,
since the trace of the matrix is equal to the redundancy of the
adjustment. The diagonal elements of the matrix, r;;, whose
values are between 0 and 1 since the matrix is idempotent,

indicate the portion of an error in an observation visible in
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the residual for that observation. The higher the r;; for a
particular observation, the better the probability of detecting
an error in that observation. The off-diagonal terms of the
r; matrix, r;;, show the portion of an error in observation j
that appears in the residual for observation ¢.

In the unified approach to least squares adjustment all quan-
tities, including parameters and constraint values, are treated
as observations. This enables the use of a priori weights to
more closely model the information input to the adjustment—
parameters are seldom completely unknown and in fact may
be known very well, while constraints are seldom absolutely
true. This also allows all equations to be treated consistently
as observation equations, which we will exploit in our testing
of constraint and parameter residuals.

The basic condition equations for the case of unified adjust-
ment are [Mikhail, 1980]:

A 0 0 v B f°
0 A, Of|wl|+|Cla=|F (2)
0 0 I Uz —I f:r

At’l)t + BtA = ft (3)
The first row of equation 2 refers to the condition equations in
the traditional sense; the second row, with the “c” subscripts,
is the constraint equations, while the third row is the obser-
vation equations on the parameters. v, v, v, are the residual
vectors for each type of observation, A and A are the partial
derivatives of the condition equations with respect to the ob-
servations, A is the vector of corrections to the parameters,
and B and C are the partials of the equations with respect
to the parameters. The vectors 1°,12,2° are approximations
for the image observations, the constraint observations, and
the parameters respectively, while the discrepancy vectors are
19,72, and f.. Each class of observation has its own covari-
ance matrix, Q, Qcc, and Qzz.

The normal equations are:

[B'W.B + C'W..C+ W, | A =
[B'W.f° + C'Wecfe — W fa]

or,

NA =t (5)

with the equivalent weight matrices W. = (AQA') = for

. -1
the image measurements and W, = (ACQCCAZ) for the
constraint observations, and weight matrix We, for the pa-
rameter observations.

Each class of “observations”, the original measurements, the
parameters, and the constraints, has a residual and a residual
cofactor associated with it.

The residuals are:

v = QA'W.(f°-BA) (6)
ve = QAW (f] —CA)
Uy = f:r + A
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and R, the total redundancy matrix, is:

Rt = ”‘vitwt (7)
I-BN"!'B‘'W —-BN7!C'W. BN"'W,,
=| -CN7'B'W I-CN7'C'W. CN™'W,,
N™'B'W N-!C'W, I-N"'W,,

Using the calculated residuals and cofactors for the total set
of observations, we can perform the same statistical testing
on constraint equations and parameter values that we do on
the image measurements. We can examine constraint obser-
vation residuals and decide whether the constraint equation
is valid, and we can test a priori parameter values to ensure
that the input covariance information was not too optimistic.

We can also examine the terms of the Ry matrix to determine
how much of an error will appear in any particular observa-
tion. In the classical approach this matrix is used to quantify
the effects of errors in the image measurements on the image
measurement residuals. In our extended application, we can
also study the effects of errors in constraint values on the
constraint residuals (i.e., constraining the distance between
two points to the wrong value) or of errors in parameter ap-
proximations (inputing a bad approximation with a too-small
variance) on the final parameter values. By examining the off-
diagonal terms in R we can look at the interactions between
types of observations—for instance, how much of an error in
an image measurement appears in the value of a constraint
residual.

Of course, the same considerations in testing residuals apply
as in the classical case [Férstner, 1994]. The ability to isolate
bad observations is completely dependent upon the redun-
dancy and the geometric strength of the adjustment. While
adding constraints increases both the redundancy and the
geometric strength, it may still be the case that bad observa-
tions cannot be unambiguously identified by examination of
individual residuals. Constraint equations typically introduce
more correlation between the residuals; if the determining
geometry of the other observations is not strong enough, a
blunder will be distributed among all the constrained points.

2.2 Effects of constraint formulation and redundant
constraints

Previous work [McGlone, 1995] has shown differences in the
reliability characteristics of constrained solutions, depending
on the form in which the constraint equations were expressed.
Specifically, a rectangular building was modeled as a scaled
rectangular prism and also by a set of coplanarity and right
angle constraints. The solution using the rectangular prism
model was much more resistant to blunders in the corner
points than was the solution utilizing the combination of
constraints. Further investigation has shown that this is a
function of the constraint equation weights; when the solu-
tion emulates the classical technique and uses very high con-
straint weights (small standard deviations), the two solutions
are exactly equivalent. As the constraint standard deviations
are relaxed to values which are more physically realistic, the
two types of solutions begin to exhibit different behaviors.

This behavior also sheds light on the question of using redun-
dant constraints. In the classical case redundant constraints
lead to a singular solution, since the equations are dependent.
For instance, constraining all four angles of a rectangle to be
right angles would be singular, since the fourth angle can be
determined from the values of the other three. In the unified
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approach, however, the constraint equations are actually ob-
servation equations; adding redundant observation equations
actually improves the solution.

3 EVALUATION OF FEATURE MATCHING USING
GEOMETRIC INFORMATION

One of the most common problems in computer vision is the -

matching of point features between multiple images. Cor-
ner detectors or interest operators generate a large num-
ber of features, often similar in appearance; this forces a
choice between accepting only the most obvious matches,
and thereby discarding the majority of the features, or deal-
ing with matches containing a large number of errors.

A simple strategy for evaluating feature matches would be to
perform a bundle adjustment for each plausible combination
of potential feature matches, with assumed object space ge-
ometry modeled by geometric constraints. By examining the
statistics for each adjustment, we could then decide which
feature matches are blunders and which are valid.

The obvious problem with this strategy is combinatorics. For
the evaluation to be effective we need redundant solutions,
i.e., at least three image rays for each object point, at least
four points to determine a general plane, etc. However, to
obtain sufficient redundancy we must process the many pos-
sible feature matching combinations. For instance, if a given
object point has three possible matches on three images, 27
solutions would have to be run. If we add another image with
another three possible matches to obtain better redundancy,
81 solutions would be required. Adding geometric constraints
between features only makes the combinatorics worse, since
we must test all possible matches of all features involved.

Our solution to this dilemma is to work with the smallest
possible redundant subsets—the smallest geometric configu-
ration which can be redundantly specified with the available
features. In this example, the redundant geometric subsets
are the right angles at each building corner. The 3D coordi-
nates of each point defining the right angle are determined by
. the intersection of the image rays; constraining the 3D points
lie at a right angle within a horizontal plane means that their
positions are redundantly determined. This redundancy, or
extra information, allows us to evaluate the point matches.

Each subset is solved for every combination of feature
matches, and feature matches which do not form any consis-
tent subsets are eliminated. Feature matches which are part
of consistent subsets are used to form larger subsets. The
process is repeated until the final solution is obtained, and,
ideally, only one consistent set of match hypotheses is left.

The computational savings due to this decomposition de-
pends upon the number of possible feature matches com-
pared to the number of subsets used. For example, if each
point has 4 possible matches on each image, each subset so-
lution will require 4 solutions. Since there are four subsets
of the total solution, a total of 4* subset solutions will be re-
quired. Doing the complete geometric solution would require
4* separate solutions. The subset solutions are smaller (fewer
parameters and points) and therefore less expensive than the
complete solution, but we must still do some number of com-
plete solutions after editing points using the subset solutions.
We would still prefer to do the subset solutions over doing
the complete solution, simply for the reason that the subsets
are simpler to edit and understand since fewer features are
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Image fhn715 showing building corners to be

Figure 1:
matched.

involved. Also, we do not necessarily have to do every pos-
sible geometric subset, as long as all features are included in
some subset.

This section describes the application of this technique to
point matching, although it can be applied to matching edges
or even combinations of edges. In the following examples
we use three images, two vertical (fhn715, fhn717) and one
oblique (fhov1627), taken over Ft. Hood, Texas, as part of
the RADIUS program [Gee and Newman, 1993]. We start
with four building corners in fhn715, shown in Figure 1. Fig-
ures 2 and 3 show the initial set of corners extracted by the
BUILD [Shufelt and McKeown, 1993] corner finder for im-
ages fhn717 and fhov1627, along with the epipolar lines cor-
responding to the points of interest on fhn715.

We first filter the corners using criteria such as epipolar
search bounds (propagated from the image orientation co-
variance), point elevation ranges, corner direction, [Roux and
McKeown, 1994b; Roux and McKeown, 1994a], or corner
type determined by vanishing point analysis [Shufelt, 1996b;
McGlone and Shufelt, 1993]. Next, potentially matching im-
age points are intersected and their standardized residuals are
examined to eliminate bad matches. The results of the these
two steps are shown in Figures 4 and 5. The smaller dots
are the points remaining after preliminary filtering using the
epipolar bounds, an expected elevation range, and the corner
direction, while the larger dots represent points which have
apparently valid matches. Note that no valid corners survived
the filtering for point 3 on image fhov1627.

At this point, we introduce the object space geometry into
the evaluation. Since we are looking for the horizontal roof
of a rectangular building, we can apply constraints forcing
the four hypothesized roof corners to lie in a horizontal plane
and to form right angles. However, applying the constrained
solution to each possible combination of potentially matching
points would require an impractical number of solutions.

Taking the potential matches for three out of the four corner
points at a time, we perform solutions constraining the three
points to form a right angle in a horizontal plane. Points in
consistent subsets are flagged for incorporation in the overall
solution, which includes all combinations of potential match-
ing points for all four corners of the building. Figures 6 and
7 show the points remaining after the right-angle constraints
solution as small dots, and the final points as larger dots.
Note that point 2 on image fhov1627 has two possibilities,
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Figure 2: Image thn717, showing all detected corners and Figure 3: Image fhov1627, showing all detected corners and
epipolar lines with image fhn715 epipolar lines with image fhn715

Figure 4: Image fhn717, showing corners after preliminary  Figure 5: Image fhov1627, showing corners after prelimi-
filtering (crosses) and the point match step (squares). For  nary filtering (crosses) and points after the point match step
this image, they were the same points. k (squares).

Figure 6: Image fhn717, showing points after the right angle Figure 7. Image fhov1627, showing points after the right
tests (crosses) and final point matches (squares). For this  angle tests {crosses), and final point matches (squares).
image they were the same points.
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about two pixels apart, remaining after the final step.

It is important to remember that hypothesis evaluation based
on image or scene geometry is strictly limited by the avail-
able geometry. In this case, the oblique image was taken in a
direction perpendicular to the baseline of the two vertical im-
ages, giving nearly optimal intersection geometry and there-
fore eliminating many ambiguous matches. A corresponding
test case, run with a vertical image (fhn713) from the same
flight line as fThn715 and fhn717, resulted in a large number of
hypotheses remaining after the geometric verification proce-
dure. Since the epipolar lines between the three images from
the same strip were nearly parallel, many matches appear to
be geometrically consistent. This problem can be alleviated
somewhat by using strips with 60% sidelap.

The experimental results given above were run with the image
parameter covariances set to very small values and therefore
not allowed to adjust, with the intent being to prevent the
image parameters from absorbing any of the matching er-
rors. The same set of experiments was run with the image
parameter covariances as determined from the original block
adjustment to see what effect it might have. This made no
significant difference in the results for the example described
above. The runs with realistic image covariances produced
one additional point match which passed the individual right
angle evaluation, but the final point match selections were the
same for both cases. This is significant in terms of computa-
tional expense since it implies that instead of a full simultane-
ous solution incorporating weighted image parameters, only
the points and constraints would need to be included. This
possibility should be verified for more test cases.

4 EVALUATION OF GEOMETRIC HYPOTHESES

The previous section has shown how the use of geometric
information improves the detection of bad feature matches.
However, we must also be able to evaluate these geometric
assumptions. It is entirely possible that, although we have
matched a feature correctly across several images, the corre-
sponding object-space point may not be the building corner
that we have assumed it is.

By using the statistics derived in Section 2, we can evaluate
the constraint equation residuals and determine whether the
geometric conditions are being met. A problem is separat-
ing the effects of bad feature matches from bad geometric
conditions; a bad constraint typically results in high image
residuals for all of the features involved.

Our approach of starting from minimal subsets and building
up to final complete solution provides an answer for this. As
described above, point or feature matches are first evaluated
using only the image information, without added geometry.
As individual features are combined into small geometric units
and constraints added to the solution, a bad geometric as-
sumption will affect only some of the solutions.

For instance, suppose that in the point matching example
discussed above, point 2 had been incorrectly identified at
the roof vent nearest the actual building corner and that cor-
responding points had been matched on the other images
(Figure 8). While we would have a perfectly valid 3D point it
is not a roof corner, it is not coplanar with the other corners,
nor will it form right angles with them.

The evaluation of the point match shows that this is indeed a
valid match. However, during the next stage, forming right-
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Figure 8: Image fhn715 with bad point 2.

corner points 0-1-2 | 1-2-3 | 2-3-0 | 3-0-1
pt 0 6.2 z 20 | 05
ptl 11.4 11.4 - 0.7
pt 2 (bad) 99 | 138 | 16 -
pt 3 - 7.8 2.6 1.0
right angle constraint || 21.6 | 25.2 4.3 0.3

Table 9: Standardized residuals from individual corner solu-
tions with bad point.

angle corners with subsets of three points, the three subsets
involving point 2 show up as bad. The statistics are sum-
marized in Table 9, where the image residuals given are the
root-mean-square of each point’s vector standardized residu-
als on each image. Subsets 0-1-2 and 1-2-3 both have bad
point standardized image residuals and bad constraint resid-
uals; subset 2-3-1 has good image residuals but a bad con-
straint residual on the angle constraint. This can be explained
by noticing that, for this solution, the bad point is on the long
side of the building so that its angular offset from the correct
location is less than for the other cases, where it was on the
short side of the angle or was the central point.

Systematic detection of bad geometry requires searching the
bad subsets for the common elements; in this case, point
2 is the common element among the three bad subsets.. A
bad subset must be identified by examining the constraint
residuals also; the table shows that the image residuals for
angle 2-3-0 were satisfactory, with only the constraint residual
bad, due to the location of the bad point.

5 CONCLUSIONS

Using geometric constraints in a bundle adjustment to verify
feature matches or geometric hypotheses can be part of an
effective hypothesis testing strategy, when supported by the
image geometry and when knowledge or inferences of the
scene geometry are available. The combinatoric problems
inherent in the method can be avoided by early editing of the
hypotheses and by utilizing sequential evaluations of minimal
redundant geometric subsets.

Use of these methods in full-sized systems will require that
the computations be optimized as much as possible. While
the tests in this paper were done using a general-purpose si-
multaneous orientation solution, a real application should use
special purpose routines, each optimized to verify a particular
geometric configuration such as right angles, coplanarity, etc.
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There appears to be no need to include the image parame-
ters in the calculation, although this should be verified with

further tests.

Our work will continue on applying these techniques to
more complicated geometric objects such as buildings, and
on incorporating them into our existing site modeling sys-
tems, such as SiteCity [Hsieh, 1996; Hsieh, 1995], MultiView
[Roux and McKeown, 1994a; Roux et al., 1995], and PIVOT
[Shufelt, 19964].
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