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ABSTRACT

Linear features, with independent descriptors in the object space, are affectively used in photogrammetric restitution
and object reconstruction, Point-based invariance is discussed and its applications in Image
Understanding/Computer Vision are contrasted with photogrammetry. Object reconstruction, being a common
invariance and photogrammetric task is evaluated by both techniques using synthetic and real image data. Research
is continuing on multi-image invariance, multi-feature construction, and combined invariance/photogrammetry
techniques.

1. INTRODUCTION both techniques. Conclusions and continuing research
are in the fourth and last section.

Imagery used to reconstruct the objects recorded is in
general two-dimensional representation of usually three- :
dimensional objects. Image features are of three types: 2. LINE-BASED PHOTOGRAMMETRIC
points, lines and areas. Until recently, photogrammetric RESTITUTION
methodology has been based primarily on point
features, particularly because of extensive use of hard-
copy image input. The increased use of digital imagery 2.1 Linear Feature Description
has opened up opportunities for exploiting linear
features since they are both abundant in imagery of A point feature is represented by two coordinates in 2D
human infrastructure, and amenable to extraction by  space and three coordinates in 3D space. Linear
automated algorithms. The inclusion of linear features,  features can be similarly described. Considering
alone or in combination with point features, into  straight lines, they arc defined by two parameters in 2D
photogrammetric reduction algorithms requires careful ~ space, and four independent parameters in 3D space,
development and analysis. expressed by equations (2.1) and (2.2), where p (the
distance from the origin to the line) and « (its angle
with the x-axis) are the 2 parameters in 2D; g (the
distance from the origin to the line), andB,,B,, B,
(angles effecting rotation such that the line is along one

Image invariance refers to the existence of properties,
derived from images, which are invariant under specific
imaging geometry, the most common of which is central
or perspective projection. One very early property used - ’ . :
in graphical rectification is the anharmonic or cross-  coordinate axis) are the 4 parameters in 3D. A circle
ratio. In recent years, activities in Image Understanding 18 defined by 3 parameters in 2D, and 6 independent
(IU) and computer Vision (CV) has resulted in  parameters in 3D, and represented by equations (2.3)
signiﬁcant devclopment in image invariance. As in and (24) in which X,y are coordinates of its center in
photogrammetric research, point-based development  the plane, and r its radius; X,Y,Z_ are coordinates of
preceded line-based invariance. Although IU/CV
applications of invariance encompass different tasks,
object reconstruction from overlapping imagery is an
application which is also common to photogrammetry.

the center; R its radius, and a,,a, are the angles

defining the unit vector § perpendicular to the plane of
the circle in 3D.

Feature-based, particularly linear features, x;cosa +y;sine =p 21

photogrammetric techniques for the reconstruction of
imaged three-dimensional objects is discussed in section
2. A brief introduction to the invariance concept and its
uses is given in section 3. Results from experiments
using both simulated and real imagery are provided for
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X, sinp, sinf, -cosB,sinp ,cosp,
Y,|= A cosB,sinB, +sinp, sinp,cosp,
% cosp,cos, @2)
cosP,cospP,
+q|-sinfcosf,
sinB,
x;-x Y+ -y Y =r? (23)
V-V= R? (24)
f}'ﬁ= 0 (2.5)
V=[(X;-X) (¥,-Y) (Z-2)) (2:6)
P=[cosacose, sina,cosa, sina2]T 27

2.2 Geometric Constraints

One of the rich sources of information when dealing
with linear features is the existence of various types of
geometric constraints in the object space among such
features. These are of two types: one providing relative
information, such as parallel, perpendicular, coplanar,
etc., and the other partial absolute information with
respect to the reference coordinate system, such as
horizontal, vertical, etc., features. Constraints among
straight lines include: relative 2 parallel lines (2
Equations); 2 perpendicular lines (1 Eq.) 2 coplanar
lines (1 Eq.); partial absolute. line parallel to X-, Y-, or
Z-axis (vertical) each provides 2 Eq., horizontal line (1
Eq.). Constraints among circular features include:
relative. 2 parallel circles (2 Eq.); 2 coplanar circles (3
Eq.); 2 circles in perpendicular planes (1 Eq.); partial
absolute. circle in XY (horizontal), YZ, or ZX planes,
each provides 3 constraint equations. Constraints
between straight lines and circles include: 1 line
coplanar with 1 circle (2 Eq.); 1 line perpendicular to
circle plane (2 Eq.), 1 line passing through circle center
(2 Eq.), all of these provide relative information.

2.3 Photogrammetric Conditions

Classical photogrammetric condition equations were all
derived on the basis of point features and therefore
need to be re-developed for linear features. Each type
of lincar features requires a suitable form. For a
straight line feature, an equivalent pair of collinearity
equations relating the line image parameters, p,« to its

object descriptors, g, B,, B,, B;:
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(Dmy, +feosamy, +fsinamy,)(my, g - X))

+(Dmy, +feosam,, +fsinam,)(my,q-Y)  (2.8)
+(Dmyy +feosam,, +fsinem,)(mg,q -Z,)=0
(Dmy +feosam,, +fsinam,,)
+(Dmy,, +foosam,, + fSinam,,) (29)
+(Dmy, + foosam,, +finam,,) =0
D=p-x,cosa -y,sina (2.10)

in which m; are elements of the image orientation
matrix, mB; are elements of the line rotation matrix.
For a circular feature in the object space, the
collinearity condition reduces to a single equation for
each image

points, i,j, on its image. The image vector is

Py XX,
py ___MT yi _yo (2.11)
P f
and the condition equation is
U-T=R? (2.12)
XL-Xc [px
i= YL_Yc _P,(XL-XC) +P,.(YL—Y c) +PZ(ZL—ZC) b, (2.13)
PP +P,p,*P.P
z,-Z, Ty e P,

in which x;,y,.£,X,,Y,,Z,, M represent the interior (10)
and exterior (EO) image parameters,
X.Y,Z,Rp,.p,p, (clements of p, see Eq. (2.7)) the
circle descriptors in the object space.

24 Line-Based Photogrammetric Operations

Line features, like point features, may be used as pass
and control features. Therefore, all photogrammetric
operations executed with point features can similarly be
performed on the basis of linear features. Here are
examples:

Resection: 3 control straight lines or 2 control circles
are the minimum required to estimate the six exterior
orientation eclements of a single photograph. If the
interior orientation elements are to be also recovered,
two additional control straight lines would be required
for a minimum solution. Combination of features and
more than the minimum control may be used.

Relative Orientation (RO): Pass straight lines do not
contribute to RO of a pair. For a triplet, however, a
pass line in 3 images contributes 2 equations to RO. A
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pass circle in 2-image overlap contributes 4 equations,
and in 3-image adds 9 equations.

Extended Relative Orientation (ERO): The coplanarity

condition of the base vector B, and two image vectors p PR
is given by:

B’.@L XPp=0 (2.14)
Alternatively, it is given by
x
[xy 1, ITM, KM T, |y| =0 (2.15)
1 R
in which
0 -B, B,
K=|B 0 -B, (2.16)
-B, B, 0
10 -x,
I,=101 -y, (2.17)
00 f [,

E=M LKM,Tz is called the essential matrixand is used for
calibrated cameras when  x,,y,f are known, while

F=I;M KM, is called the fundamental matrixand is
used for uncalibrated cameras. Since the rank of K is
2, |F| =0 (Barakat, 1994). Further, the 9 elements of F
are recoverable to a scalar multiple, hence the
maximum number of independent parameters in F is 7.
Consequently, ERO of a stereopair can only recover 2
IO elements in addition to the classical 5 EO elements.

Fartial Absolute Orientation For complete absolute
orientation (AO) of a relatively oriented stercomodel,
control linear features are needed. Each control
straight line contributes four independent equations to
the recovery of the 7 parameters of AQ. Therefore, a
minimum of 2 non-coplanar such lines is required.
Frequently, no "control" lines may be available, and
instead geometric constraints which yicld partial
absolute information exist. These may then be used to
recover additional rotational elements depending upon
the available constraints (horizontal or vertical lines,
etc.).

Block Adjustment. This is the general method which
when based on unified least squares and carries all the
parameters and constraints as a priori weighted
information, can be used to perform any of the
operations discussed separately above.
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2.5 Experiments and Results

A large number of experiments, with both simulated
and real data, were conducted to test the developed
mathematical models and study the effectiveness of the
exploitation of linear features in photogrammetric
applications. The results are:

Case A - Simulated Data: A pair of photographs with
strong convergent geometry were simulated such that
the set of perfect image coordinates were perturbed
with errors having 0,=0,=0.01mm. Two experiments
were conducted using the two photo block triangulation.
Experiment #81 is a regular two photo block
adjustment, which recovers 12 exterior orientation
parameters, using 10 control lines and 10 pass lines.
Experiment #82 attempts to recover both interior and
exterior, 18, orientation parameters of the two photos
using 10 control and 10 pass lines. Tables 1 and 2 list
the RMS for dX,dY,dZ computed at 5 points on each
pass line for experiments S1 and S2 respectively. For

each point; dX,dY,dZ are the differences between
X,Y,Z computed using the a priori known line
descriptors (g,B,,B,,8;) and X,Y,Z computed using
their estimated values after the block adjustment.

Case B - Real Data (Bangor Imagery): The data set
consists of two nearly vertical aerial photographs flown
over an urban area in Bangor, Maine, at a scale of
about 1:8660. Regular two photo block triangulation
(i.e. solving for 12 parameters) was performed using 6
control lines and 9 pass lines. Table 3 lists the
differences in the camera parameters between the
original and the recovered parameters while table 4 lists
the RMS for dX,dY,dZ computed at 5 points on each
pass line. The results show the applicability of using
lines in the two photo block to recover both the camera
and pass feature parameters.

3. INVARIANCE-BASED OBJECT

RECONSTRUCTION

3.1 Imvariance Versus Photogrammeiry

Image invariance theory is based on a premise which is
fundamentally different from photogrammetric theory.
Image invariance deals with invariant quantities under
perspective projection (transformation). The cross-ratio
is the classic invariant of the projective line. For four
points on a line, under projective transformation, the
ratio of ratios of distances is invariant. In most
photogrammetric activities, very careful modeling of the
sensor elements as well as imagery acquisition
parameters is central to the techniques used. By
contrast, image invariance is almost totally built on the
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opposite thesis, it does not require knowledge about
such parameters and relies instead on invariant
properties derived directly from the overlapping
imagery. Potential gain may be expected from analyzing
these two different theories, establishing their
relationships, and seeking a hybrid approach which
maximizes the contribution of each. A hybrid approach
may lead to improved techniques for object
reconstruction with rigorous propagation of quality
measures for a variety of imaging systems.

3.2 Invariance Applications in IU/CV

The central theme of CV is to achieve human level
capability in the extraction of information from imagery
for such applications as object recognition, navigation,
and object modeling (Hartley, 1993). By contrast, the
primary goal of photogrammetry is accurate
reconstruction of 3D object from overlapping imagery.
Thus, object model construction is a common goal of
both TU/CV and photogrammetry, in which invariance
plays a role. Other IU/CV applications of invariance
include (Zisserman, 1995); (1) Image and object featurc
transfer for 2D objects; (2) Model based object
recognition: given a perspective image of a scene, the
task of model based vision is to identify which objects if
any, from the model library, are in the scene; (3)
Epipolar Geometry: a point in one image determines a
line in the other on which the corresponding point must
lie. = This reduces the correspondence (matching)
problem to 1D, rather than 2D search. (Used also
extensively in photogrammetry); (4) Transfer (image
transfer for 3D objects): given two images of a 3D
structure, points in a:new image are determined, given
only a small number of point correspondences. This is
accomplished without reconstructing the 3D structure,
nor knowing the camera parameters or motion; (5) 3D
structure recovery (3D object rcconstruction):
recovering non-euclidean 3D structure given only
corresponding image points in a stereo pair of views.
Using control points, the object is reconstructed in 3D
euclidean space. (Main applicationin photogrammetry).

33 Photogrammetric Analysis of Invariance

Invariance is based on the same mathematical principles
as photogrammetric theory. Therefore, one would
expect that invariance techniques would have equivalents
in photogrammetry.  Such techniques, which we
analyzed, include point- and line-based image and object
transfer for 2D planar objects (Barakat, 1994).
Invariance yields equations of straight lines the
intersections of which give the positions of the points to
be transferred. For non-redundant 4-point invariance,
the sequence of points used yields line pairs of different
geometric strengths. In redundant cases, using different
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point sequences to form linear condition equations
results in least squares estimates which are different for
both the positions and their quality. Corresponding
photogrammetric  techniques = (which  implement
projective transformation between planes) based on
point and line features, on the other hand, provide
unique estimates and covariances for both non-
redundant and redundant cases. A refined least squares
approach, for which the linear invariance equations
become non-linear, appears to alleviate the non-
uniqueness problem.

Next, point-based image invariance is investigated for
three-dimensional objects in multiple images; in
particular the use of the fundamental matrix to transfer
images from two photographs to a third. Introducing
the constraint of zero determinant on the fundamental
matrix stabilizes the solution, which otherwise leads to
widely varying results. Accurate recovery of F is quite
critical as will be discussed also in object reconstruction
in the following section.

3.4 Object Reconstruction By Invariance

In the derivation of invariance relationships for image
transfer, object coordinates are eliminated and the
image acquisition parameters are usually lumped
together and replaced by other nonphysically significant
parameters such as the fundamental matrix. In an
alternative derivation, algebraic elimination of the
camera orientation parameters from the equations
results in invariant coordinates of the object points.
These coordinates are identical from any two images of
the object, provided that 5 control points, not any four
of which lic in a plane, are identified in both images.
The 3-D object is, then, reconstructed from the
invariant coordinates using a cross-ratio of determinants
in a similar approach to the 2-D (planar object) case.

According to Barrett (Barrett, 1994) the method is
explained as follows. Two points are selected, e.g. P,
and P,, and the line passing through them becomes the
"spine" of a "pencil" of three planes; P,P,P,, P,P,P,,
and P,P,P,, as shown in the figure. For any other
general object point, P, a fourth plane in this pencil is
constructed, P, P,P. Then, the cross-ratio of these four
planes is computed as the first invariant coordinate of
P; C/(P). The procedure is repeated for two other
choices of the "spine" of the pencil, e.g., P,P, and
P P,.
C,(P),C,(P),C,(P) provides invariant propertics of the

The resulting set of cross-ratios of planes;

three planes in space hinged on the spines P, P,,P,P,
and P P,. These three plancs intersect at the general
point P, whose object coordinates are thus calculated.
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It is clear that in this case we also have many possible
combinations and sequences. Results show that the
uniqueness problem exists here as it does with the 2D
case.

The original method by Barrett utilizes linear equations,
avoiding the need for initial approximations, and uses
the minimum (non-redundant) number of 5 control
(Basis) points. As in the case of 2D invariance,
discussed in our previous work (Barakat, 1995), the
uniqueness problem exists. Different
combinations/sequences of control (Basis) points lead
to different results,

In our modification, a refined least squares technique,
which allows for iteration on the observables as well as
on the unknown parameters, was applied to alleviate the
sequence problem. In addition, the use of redundant
number of control points is introduced which
significantly improves the results. Also, in view of our
previous work the constrained least squares technique
for the estimation of the fundamental matrix was
implemented to get more accurate results than the

original lincar estimation of F.

The improvements in the results due to the modification
of the original method, are presented and discussed in
the following section. Because object coordinates are
involved together with image coordinates, the
photogrammetric equivalent to this invariance task is in
general two-photo block triangulation.  Since in
invariance no information is assumed with regard to the
sensor, all 18 I.O. and E.O. acquisition parameters must
be assumed to be unknown. Five control points yield 20
collinearity equations, and 8 pass points yield 8
coplanarity equations, thus a redundancy of 10 will exist
for the equivalent invariance unique case. If the 5
control points are taken as a subset of the 8 pass points
a redundancy of 5 still remains. The following sections
presents comparative results of both approaches.

3.5 Experimentation and Results

Extensive experimentation has been performed
employing the procedure described above for object
reconstruction using invariance, and comparisons were
made with the equivalent photogrammetric technique.
The results of this experimentation are summarized in
the following cases.

Case A - Simulated Data  Two pairs of photographs,
one with convergent geometry and the other with
normal vertical geometry, were simulated such that the
set of perfect image coordinates were perturbed with
errors having o,=0,=001mm. Six well distributed
control points and 16 object check points were used for
object reconstruction. Table 5 summarizes the rms of

dX,dY,dZ for the original and the modified invariance
and the 2 photo block. It is very clear that the modified
method results are superior to those of the original
method especially for the convergent (C) case. In the
convergent geometry case, the 11 extended relative
orientation parameters for the two photos (18-7=11)
are distinct and have significant values. Therefore,
lumping those 11 parameters into 7 recoverable
elements of the fundamental matrix affects the solution
and requires more accurate estimation of the
fundamental matrix as implemented in the modified
method. For the normal vertical geometry case, the
number of well defined camera parameters is smaller
than that of the convergent case. The 7 independent
elements of the fundamental matrix can more easily
recover those camera parameters for this geometry, as
can be seen in the small amount of improvement
between the original and the modified methods. It is
important to note that, as in the case of 2D invariance,
the control points configuration and the location of the
check points have significant influence on the quality of
the results. All subsets of 4 points, out of the total 7
points (6 control + 1 check), should be checked not
being close to falling in a plane. The main advantage of
the invariance technique, besides that no knowledge is
required for the image acquisition parameters, is that no
approximations for the ground coordinates of the check
points are required.

Case B - Real Data (Purdue Campus Imagery): The
modified method was applied on a pair of real vertical
images flown over the Purdue campus, at a scale of
1:4000. The equivalent photogrammetric technique was
performed using the same data set. Table 6 lists the
rms of dX,dY,dZ for 20 check points inside and around
the border of the control points frame, wheredX,dY,dZ
are the differences between the estimated coordinates
and the known measured coordinates. Both invariance
and photogrammetry worked equally well because of the
well distributed control points and the location of the
check points. The most significant conclusion from this
experiment is the importance and sensitivity of the
estimation of the fundamental, F, matrix and its effect
on the success of the invariance method. All subsets of
7 points out of the total number of points used to
estimate the F matrix should have different Z values so
that they are not close to being on a plane. This is even
more important than having different Z values for the
control points on the quality of the obtained results.

Case C - Real Data (Bangor Imagery): The data set is
described in Case B in section 2.5. Table 7 lists the rms
of dX,dY,dZ of check points using both modified
invariance and photogrammetric methods. Six well
distributed control points were selected along the model
perimeter (the overlap area of the two photos) with the
11 check points both inside and on the border defined
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by the control points. Improved results were obtained
by photogrammetry, while invariance performed less
accurately due to the location of the check points
relative to the control points frame. It is clear that the
invariance method works better if the check points are
confined with in and closer to the control points frame.

4. CONCLUSIONS AND CONTINUING RESEARCH

1. Linear image features are significant source of
information which when properly exploited facilitate
three-dimensional object reconstruction, since they are
abundant in human-made infrastructure, and are
amenable to automated feature extraction.

2.  Geometric constraints between various linear
features provide substantial information in support of
photogrammetric restitution and object reconstruction,
both in absolute and partially absolute sense.

3. Feature recovery by photogrammetric techniques
(triangulation or extended rclative oricntation) is
accurate, cven though the rccovery of the interior
orientation parameters may not be accurate, due to
projective compensation,

4,  Invariance provides a useful tool for object
reconstruction, particularly since it does not require
approximate values.

5. The point sequence used to construct the invariance
equations can have a significant influence on the results,
particularly for the redundant case where position
estimates and their quality vary. A refined least squares
approach, which requires linearization of the equations
appears to alleviate this non-uniqueness problem.

6. It is crucial that the fundamental matrix, F, be well
recovered for the success. of iavariance technique,
especially for the  convergent . geometry case.
Furthermore, the configuration of control and check
object points is rather critical to the quality of the
results. Points used {or both the estimation of F and
as control points should not fall close to a plane.

Rescarch is continuing on the following:

a. Experimentation to study the effects of various
configuration of the ground points (both control and
check) and the different camera geometry on the
performance of the invariance technique.

b. Extension of the invariance technique to apply to
multiple overlapping photos.

c. Investigate the line-based and combined point/line-
based invariance techniques for object reconstruction,
d. Study the possibility of developing a hybrid approach
combining invariance and photogrammetry for object
reconstruction.
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Line #|dX (m)[dY (m)[{dZ (m) dX (m)|dY (m){dZ (m)
1 0.023 | 0.077 | 0.013 Invariance | 0.004 | 0.005 | 0.002
2 0.041 | 0.033 | 0.070
3 0.069 | 0.008 | 0.041 2-Photo Block| 0.004 | 0.005 | 0.000
4 0.031 | 0.042 | 0.004
5 0454 { 0.512 | 0.123 Table 6 RMS at 20 Check Points for Invariance and
6 0207 | 0.118 | 0.288 Photogrammetric Mcthods for Objeet Reconstruction Using
7 0.019 { 0.066 | 0.045 6 Control Points (Purduc Campus, Real Data, 1:4000)
8 0.648 | 0.245 | 0411
9 0.042 | 0.056 | 0.019 dX (m)|dY (m)|dZ (m)
10 0.018 | 0.042 | 0.177
Invariance | 0.323 | 0.297 | 0.739

Table 1 RMS at 5 Points on cach Check Line
Two Photo Block solving for E.O. Parameters
Using 10 Control Lines + 10 Pass Lines (S1)

2-Photo Block| 0.059 | 0.037 | 0.689

Table 7 RMS at 11 Check Points for Invariance
and Photogrammetric Methods for Object Reconstruction

Line #{dX (m)|dY (m){dZ (m) Using 6 Control Points (Bangor, 1:3660)
1 0.045 ] 0.085 | 0.017
2 0.008 | 0.060 | 0.013 Line #|dX (m)|dY (m)|dZ (m)
3 0.075 | 0.044 | 0.052 0.187 | 0051 | 1246
4 0.094 | 0.085 | 0.015 ,
0.139 | 0515 | 0.168
5 10323 0395 | 0.108
A 0.005 | 0.020 | 0.441
0 0310 | 0.184 | 0.505 0.005 | 0049 | 0.408
7 10041 | 0.099 | 0.063 o | o '

0.060 | 0.109 | 0.461
0.218 | 0.124 | 0.670
1.611 | 0.286 | 0.240
0.003 | 0.035 | 0.119
13751 0981 | 7.148

8 0.612 | 0.216 | 0.403
9 0.106 | 0.080 | 0.027
10 | 0.170 | 0.043 | 0.131

NelNoLBEN e N B R

Tablc 2 RMS at 5 Points on each Check Line
Two Photo Block solving for 1.O.+E.O. Paramcters
Using 10 Control Lincs+10 Pass Lines (S2)

Tablc 4 RMS at 5 Points on cach Check Line Two
Photo Block solving for E.O. Parameters Using 6 Control
Lines + 9 Pass Lines (Bangor, Real Data, 1:8660)

Photo #| Aw (deg) | Ad(deg) | Ax(deg) AX, (m) | AY, (m) | AZ, (m)

1 0.254 0.070 -0.006 -0.729 -1.182 2.621

2 -0.043 -0.074 0.002 -1.003 0.939 2216

Table 3 Diffcrences in Camera Parameters - Two Photo Block using
6 Control Lines and 9 Pass Linecs - Real Data (Bangor (1:8660))

Convergent (C) Geometryj{Normal (N) Geometry
dX (m) {dY (m)|dZ (m) {dX (m)|dY (m){dZ(m)

Original Invariance| 3.855 | 4.007 | 3.165 {| 0.196 | 0.089 | 0.320

Modified Invariance| 0.307 0.169 | 0.408 |§ 0.112 | 0.045 | 0.315

2-Photo Block 0.033 0.029 | 0.061 |} 0.034 | 0.037 | 0.136

Table 5 RMS at 16 Check Points for Invariance and Photogrammetric Mcthods for
Object Reconstruction Using 6 Control Points - Simulated perturbed Data (0.01 mm)
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