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ABSTRACT

Area-based matching has been acknowledged as being more precise than feature-based matching at finding
corresponding points on digital images. This paper investigates a method of further improving the accuracy of the area-
based technique by modifying the functional model describing the relationship between the windows. The method
replaces the approximations made using an affine transformation. It makes use of a surface model and the collinearity
conditions in determining the transformation needed. Since there is greater fidelity involved in the transformation, it is
hypothesised that the improved functional model will allow the use of larger windows for matching and hence improve
accuracy. The derivation of the theory and some experimental results will be presented. Initial experimental results show
that the proposed method is capable of attaining absolute accuracy mildly superior to conventional area-based

matching.

1.0 INTRODUCTION

Techniques in digital image matching, or  image
correlation, have been developed within various
disciplines over the last few decades and a vast number
of approaches exists. These techiques can be classified
into two main groups, viz, feature-based and area-based
maiching. Stereo image matching techniques make use
of a selected area or features within the image or the
combination of both for matching (Li 1991). However, it is
well accepted that area-based matching (ABM) method is
more precise than feature-based matching for finding
corresponding points on digital images. Methods in area-
based matching have been developed by Foerstner
(1982) and Gruen (1985). Some examples of the
applications and experiments done on ABM in various
fields have been reported by Ackermann (1984), Pertl
(1985), Rosenholm (1987b), Crippa et. al. (1993), Hahn &
Brenner - (1995).- Further extensions of area-based
matching were proposed by Gruen & Baltsavias (1987)
whereby methods of constraining the matching with
model coordinates  (X,Y,Z) through the collinearity
conditions were proposed. Their methods, known as
geometrically constrained area-based matching, use a
unified (combined) least squares solution in which
corrections to the affine parameters and model
coordinates (X)Y,Z) were solved iteratively. Rosenholm
(1987a) proposed the method of multi-point area-based
matching technique in evaluating three-dimensional
models. Area-based method is further extended by
Baltsavias (1991) through the use of images from several
viewpoints (multi-image). Recent development of the
area-based method is proposed by Wrobel (1991),
Heipke (1992) whereby matching is done on a global
approach by integrating multi-image matching and object
surface reconstruction.
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This paper investigates a method of improving the
accuracy of the traditional area-based technique by
modifying the functional model through the use of a
surface model to describe the relationship between the
windows. The method replaces the assumptions made
using an affine transformation. It also serves as a
compromise to the more complex global area-based
maiching method. The method proposed here makes use
of a surface model and the collinearity conditions in
determining the transformation needed. It solves, through
an iterative least squares solution, directly the corrections
to image coordinates (x,y) of the search window. In
addition, two ‘new’ unknowns, the gradients in X and Y
directions on the surface at the point on the surface which
corresponds to the centre of the search window and their
second = derivatives- are introduced. Since the
transformation used is more rigorous than the affine, it is
hypothesised that the improved functional model will
allow the use of larger windows for matching and hence
improve accuracy. It is also hypothesised that the use of
a better functional model will converge more quickly to
give a solution.

2.0 AREA-BASED IMAGE MATCHING USING A
SURFACE MODEL

The basic area-based observation equation, which gives
a relationship between the radiometric values of
corresponding pixels in the left and right image windows,
can be written as follows :-

ILXLYL)+ n(xy) =IR(XR,YR) ()

where,

IL, Ir are the intensities of the left and right pixels
respectively

XL, YL are the image coordinates of the left pixel

XR, YRare the corresponding image coordinates on
the right image

n(x,y) is the difference caused by noise at the point
(x,y) on the left image
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The relationship between image coordinates on the left
(xL,yL) and (xR,yR) on the right is given by assuming an
affine transformation exists between the windows
(Foerstner, 1982). Furthermore, no information of the
object is taken into account in the matching process.
Matching is solely based on the intensity values of the
pixels and the assumed affine transformation. However, if
the collinearity conditions were to be used, the
transformation could take into consideration the shape of
the object. If some information about the object’s surface
is availabale, then a sensible surface model can be
introduced and the model could be improved. This would
then constrained the matching to the surface model. In
doing so, image coordinates (xR,yR) are expressed in
terms of (x|,yL) using coordinates (X,Y,Z) on the object
surface.

Consider a window of size n x n pixels (where n is odd)
on the left image with its centre (i.e. the central point)
having the coordinates of (x[,y). It should be noted that,
‘central point’ does not have to be the centre of the
window. The term is chosen merely for the convenience
of explanation. By using an appropriate surface model,
the corresponding position on the right image (XR,YR),
where xR,yR are not neccessarily integers, can be in
terms of the central point on the left (x.,yL) and the
corresponding coordinates (X,Y,Z) on the surface. In
addition to the central point, the relationships of
neighbouring points, say, (x| +Ax|, yL+Ay) on the left
image and (XR+AXR, YR+AYR) are also needed. Values
Ax|_ and Ay|_ are known while AxR and AyR are not known
but are defined by the relevant transformation between
the windows.

Use of the collinearity equations, would introduce three
additional parameters, (X,Y,Z) for the central point and
also for each of the neighbouring points. Supposing that
the six relative orientation parameters are known, then a
relationship can be established that relates (xL,yp) to
(X,Y,Z). By adopting a suitable surface mode! coordinates
of neighbouring points on the surface can be related to
the central point and the replacement of the affine
transformation is achieved.

2.1 Functional Model

The coordinates (xi,yL,) of the central point, O, of the
window on the left image can be represented by :-

... (i)

where, xi and yp are known; (Xo,Y0,Zo) are not known
(but needed) and an initial estimation can be obtained;
fo and fy, are the collinearity conditions. For a
neighbouring point, P, with shifts (Ax|,Ayr) from the
origin on the left image, then its coordinates can be
represented by :-

xL=fx (Xo.Yo.Zo) 5 yL=1y (Xo.Y0.Z0)

XL+Ax =1y (Xp,YP.ZP)
yL+ayL =fy (Xp.YP.Zp) ... (iii)
where Xp,Yp,Zp are the coordinates of the neighbouring
points on the surface. If the corresponding shifts on the
object are AX, AY and AZ, then eqn (iii) can be written
as :-

XL +AX| = fo(Xo+AX,Yo+AY,Zo+AZ)
YL+AYL = fyL(Xo+AX,Y0+AY,ZO+AZ) . (iv)
Supposing that matching is to be done for a flat surface
then a surface model can now be introduced across the
window to represent the surface. This is given by
(considering only the first order terms, i.e., a planar
surface model) :-

AZ = EAX +§—Z—AY e (V)
oX oY

where (0Z/0X) and (9Z/dY) are the gradients of Z in the X
and Y directions respectively. These gradients define the
model surface and they are to be evaluated in the
solution. In turn, the terms AX and AY can now be
expressed in terms of Ax| , Ay :-

AX = —AX +—Ay, .. (vi)a
X L ay| L
oY aY

AY = — A +——A .. (vi)b
ax, L+8y|_ YL (vi)

where (0X/dxp), (0X/9yL), (aY/oxL), (dY/ayL ) are derived
from the collinearity equations and Ax. & Ay are
known shifts on the left image. By substituting eqns (vi)a
and (vi)b into eqn(v), AZ can be expressed as a function
of the shifts Ax|, Ay :-

oz[ ax . . X az[ay . av
AZ = ZE 22 A + P ay [+25] 2 Ay + 25
ax{axL Loy, y'—} av[axl_ L y'—}

This implies that AX, AY and AZ can be written in terms
of the known shifts Ax{_ and Ay|, as well as the surface
gradient (9Z/0X) and (9Z/dY). Since AX, AY,AZ, (9Z/oX)
and (9Z/9Y) represent the planar surface model of the
object, these terms are therefore common to both the left
and right windows. In other words, given a neighbouring
point on the left image whose are (x| +Ax|, y| +Ay|), its
corresponding coordinates on the right (xg+Axg, yR+A
YR) can be estimated via the planar surface model. Thus
eqn (i) can now be expanded to represent neighbouring
points by :-

IL(XL+AXyL+AY ) + n(x+Axp y+Ay) ) =
IR(XR+AXR,YR+AYR )

.. (viii)
Linearising egn(viii) in xR, YR, AXR and AyR will yield :-
XL +HAXLYLHAYL) + nOAXY+AY) ) =
IR° xR +AxR° yR+AYR)
dlg dlg dlg dlp
— |dxg +| =— |dyR +| — |[dAXg + —— 1dA
{axg] XR [ayﬁ} YR {axﬁ R PR YR

. (iX)
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where the superscript © indicates a priori estimate and
dxp, dyRr, dAxR and dAyR are the co(grections to the a
priori value. Estimates of xR~ and yg~ can be obtained
from a suitable method, such as feature detection or even
manual selection, and estimates of AxR0 and AyRO are
computed using provisional values of Xg, Yo, Zo,
(02/0X), (0Z/3Y) and the planar surface model. The terms
JIR/OXR are JIR/JYR the gradients of the intensities in the
x and y directions across the right image.

Looking at eqgn (ix), it should be noted that corrections
dxg and dyr are the terms that are sought in the
solution. In order to use the surface model in the
matching process, a relationship for the terms dAxg and
dAyR is needed. Consider the term Axg, Wthh can be
expressed as :-

(OXR/IX)AX + (IXR/AY)AY + (OXR/OZ)AZ . (X)
Substituting eqns (vi)a, (vi)b and (vii) into eqn (x) and
replacing (0Z/0X) and (9Z/dY) by G and H respectively
will give :-

AXR =

Axg = [a_a_ax_é__aY_JAxL[a__a&a_ﬂJA )

X ox_ Y ox aX oy, Y oy,
g X xXg X
H—=B. —Ax +—B. Ay, (G
{az o oz oy, YL}
oxg dY axR oY .
H == —AX Ay, H . (xd
[az ax 1oz oy, VL} ()

Equation (xi) expresses AxR in terms of the known shifts
AX|_, Ayl on the left image, the partial derivatives of the
collinearity equations (calculated using provisional values
of xRO, yRO and computed Xo, Yo, Zo) and the terms G,
H as obtained from the planar surface model. As such,
only G and H are not known and to be solved, hence :-

aAXR

4G+ 22%R gy
3G

oH

dAxg = .. (xii)

The partial derivatives (dAXR/0G) and (dAxR/oH) are
obtainable from eqn(xi), which are :-
anR

oxg oX axg oX

3G =l: 3z K _é‘Z_MAyL:I . (xm)a
dAXp _|dxg Y AN
T [82 3 AX == 57 ay 7 .. (xiii)b

Similarly, the relationships for AyR and dAyR are :-

Ayg = {

Wa X %.K}AXL+[%.%+%.G_Y}M

X ox Y X ay. oY
YR 8)( ayR oX
92 YR O~ G
+[ 52 3 LTz W
DR O Ax + DR 2L Ay H .
"{ 0z ox Tz (v)
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while, the partial derivatives are given by :-

A n P a4 = By | e

3G [az Ltz M bv)a
JAyr | dyR aY oyr dY

9Vr 2L ax +2B. 255 .

oH {az Tz M ()b

Partial derivatives (dxR/dXo), (dyR/0Xo), (0XR/9Y o),
(0yR/9Y o), (0XR/0Zp) and (dyR/0Zg) can be obtained from
the collinearity equation and their form is well
documented in most photogrammetric books.

Substituting eqns(xiii) and (xv) into the eqgn (ix), the
linearised observation equation would be :-

I +AXL YL +AYL) + n(x+Ax_,y+Ay( )

IR°xR°+axR° yR+AyR°)
)
g 3k
Ik g d
+_axRJ XRJ{ay } yR
ENC T
_BXR G E)yR oG
[ 3y Axg , Oy dAyg .
Ol 9Axg , Jlp OAVR |, .
Yo%y oH oy oM (v

Equation (xvi) is non-linear in dxR, dyr, dG and dH, thus
an iterative least squares solution is needed to solved for
the corrections.

2.2 Computational Steps

The steps needed in evaluating the coefficients can be
summarised as follows :-

(a) Select a window of n x n pixels in the left image
and let the coordinates of the central point be
(XL, yL). The initial estimate of corresponding
position of the central point (xR, yR) is then
obtained.

Using these coordinates and the relative
orientation  parameters, the corresponding
(provisional) object coordinates, Xo, Yo, Zo, are
computed.

Determine the shift Ax_ and Ay|_ so as to represent
the position of a neighbouring point with respect
to (xL, ypL). This is followed by computing the
partial derivatives for the planar surface model
and subsequently AX, AY and AZ, as shown in
eqgns (vi)a, (vi)b and (vii), are evaluated at this
position.

With the information obtained in (c) the values of
AXR and AyR are calculated using eqgns (xi) and
(xiv), thus yielding the corresponding coordinates
of x',yL'on the right image, i.e. xR', YR'.

The values of xR', yR' obtained in (d) would
enable the computation of the partial derivatives
OXR/OX, dyR/oX, dyR/OX, dyR/AY, 0xR/0Z and

(b)

(€)
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dyR/0Z which constitute the coefficients of the
linearised observation equation.

The intensity values at x|, y' and xg', YyR' are
obtained and the gradients dIR/oxR and JIR/JYR
are computed.

Steps (c) to (f) are repeated for every pair in the
windows, and thus, a set of observation equations
(egn(xvi)) is formed.

(f)

(9)

2.3 Radiometric Parameters

So far, the observation equation (eqn(xvi)) only models
the geometrical relationship between the corresponding
pixels in both images. Introducing radiometric parameters
r1 and ro (Pertl 1985), which are an absolute difference
and a contrast, to model the radiometric differences
between the two images, then eqn (viii) will take the
following form :-

IL(xL+AxL,y|_+AyL)+ N(X+AX| ,y+Ay| ) =rq
+ r2IR(XR+AXR,YR+AYR )
and linearising would yield :-

we (xvii)

IL(XL+AXL,yL+AyL) + n(x+AxL,y+AyL) =rq 0
+ I’20|RO(XRO+AXRO,yRO+AyRO) + drq

+ {1R°R%+axR°,yR%+AyR)) dro

+

ol al
_ﬁ}rﬁ’dxﬂ + {-a—yBR—]rfdyR

O 90, Ok Ave
"o e

r
" BIR anR . BIR .
BXR ayR

. (xviii)

where r1°, rgo are the a priori estimates of the
radiometric parameters and dry, dro are the corrections
to the a priori value. The solution is solved iteratively until
a suitable stopping criteria is met. In the initial iteration,
the values of r1° and r2° are 0 and 1 respectively.

2.4 Higher Order Surface Model

When dealing with complex shapes, ean (xviii) can be
extended to include second or higher order terms. For
instance, if a second order model were used, then  egn
(xviii) would contain the terms dG? dH? and dGH. The
least squares solution would then has to solve for these
three additional unknowns.

3. EXPERIMENTS USING OBJECTS OF KNOWN
DIMENSIONS

Tests of the method were carried out using images of
both a 6 mm thick aluminium plate and a PVC cylinder.
These objects were chosen because they are smooth and
of known dimension. Hence, results obtained could be
easily verified with known quantities. Images were taken
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using a pair of Philips CCD sensors fitted with 25 mm
1.4 Fujinon lenses. These images were then captured by
a PC Vision Plus A/D frame grabber. A scale factor exists
in the x direction (1 : 1.18) as sizes of image sampled
and grabbed are different. These cameras are mounted in
a box, with a base distance of approximately 160 mm.
The relative orientations of these cameras are known. A
projector was fitted in between the lenses for the purpose
of projecting patterns onto the object. The pattern used in
this investigation was a diamond shaped mesh.

Figure 1a

Figure 1b

Figures 1a and 1b show the mesh being projected to the
aluminium plate and the cylinder respectively. Points of
interest in the image are the intersections of the mesh
(nodes). These are determined by digitising manually but
efforts are being made to include a 2D epipolar search for
this purpose. A total of 66 points and 95 points were
selected for matching on the plate and the cylinder
respectively. The'sizes of windows used in the test range
from 9 x 9 to 101 x 101 pixels.

In the case of the aluminium plate a first and second
order surface model were used, whereas, only a second
order surface model was used for the cylinder.

4, ANALYSIS OF RESULTS

Results obtained from the proposed method (hereby
referred to as 1SM and 2SM for first order and second
order surface respectively) were compared against those
obtained form the ABM method. Comparisons were done
on the following basis :-

(a) the internal precision, which is indicated by error
ellipses computed using the standard errors obtained
from the least squares adjustment.
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(b) the accuracy, which was obtained by fitting the
matched coordinates to a plate (plane) or cylinder.
(c) the computation time

4.1 Error Ellipses

Fig. 2 Axes of error ellipse against window size
(aluminium)

0.1
0.09 +
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ABM (minor)
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0.06 +
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0.03 f 1

major/minor axis (pixel)
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0.01 +

0

D ~

':2“

window size

Fig. 3. Axes of the error ellipse against window size

o1 (cylinder)
0.16
ABM (major)
0.14 . 2SM (major)
o012 | ------2 ABM (minor)
— -« —- 28M (minor)

0.1 4

0.08 -

0.06 -

major/minor axis (pixel)

0.04 +

0.02 A

Figures 2 and 3 ‘show the magnitudes of the standard
errors, represented by an error ellipse, as plotted against
the window size for the aluminium plate and the cylinder
respectively. It can be seen that in fig. 2 that the
magnitudes of the major and minor axes for the 1SM are
always smaller than those from the ABM method. At
maximum window size (101 x 101) the difference in major
and minor axes is almost 0.01 and 0.02 pixels
respectively, in favour of the 1SM method. The results
obtained for the cylinder show a similar pattern (fig. 3).
The difference between the major and minor axes at
maximum window size is about 0.03 and 0.02 pixels
respectively. This indicates that the 1SM and 2SM
methods are better functional models and are able to
mode! the observations to a better degree than the
conventional ABM.

4.2 Test of Accuracy

The accuracy of the matched coordinates obtained was
determined by using a surface fitting program. Figures 4
and 5 show the standard errors of the goodness of
surface fit in mm for the plate and cylinder respectively.
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Fig. 4 Standard error of surface fitting against
window size (aluminium)

ABM 1SM----e-- 25M
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8
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Fig. 5 Standard error of surface fittting
against window size (cylinder)
——— ABM 2SM
0.8

standard error (mm)

window size

(a) Aluminium plate ,
As mentioned earlier, both the 1SM and 2SM
models were tested on the aluminium plate. Figure 4
shows the three curves representing the standard
errors for ABM, 1SM and 2SM. It can be seen that
the curve representing the standard errors for the
1SM model is smoother than the curve for ABM.
However, the values of the standard error for both
methods do not differ greatly. The minimum
standard deviation obtained through both the ABM
and 1SM methods is approximately 0.15mm.

On the other hand, the standard errors for the 25M
are greater than both the ABM and 1SM methods at
any window size. This could indicate the use of
unnecessary parameters (curvature) to represent the
aluminium plate in the matching process.
(b} Cylinder
To test the accuracy of the method on the cylinder
only a 2SM was used. It was decided not to include
the 1SM model as it does not contain any curvature
to represent the cylinder. Figure 5 shows that the
standard errors obtained in using a second order
surface model (2SM) to represent the cylinder is
significantly smaller compared to ABM at window
sizes 35x35 and larger. However, at smaller window
sizes, as from 9x9 to 35x35, it seems that the
second order terms contributed the problem of
overparametrisation. This can be explained by the
fact that, for smaller windows sizes, the area to be
matched is almost a plane thus introducing
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unnecessary terms in the matching process. This
therefore would yield less accurate resulis. The
minimum standard deviation for ABM and 2SM are
approximately 0.19mm and 0.13mm respectively.
This shows that accuracy from the 2SM method is
better than the ABM.

4.3 Computation Time

Computation time (min:sec)

Window size ABM 25M
9x9 00:26 00:21

55 X 55 07:38 06:32
101 X 101 34:26 33:51

Table 1. Computation time for the ABM and SM methods

Table 1 compares the computation time of the ABM and

SM methods for the cylinder (95 points) at window sizes

9, 55 and 101 pixels. The stopping criteria used for the

least squares solution in both methods are :-

(a) rate of convergence (Mikhail & Ackermann, 1976),
which is 0.01 pixel

(b) the magnitude of the corrections to the unknowns,
which is 0.01 pixel

(c) the maximum number of iterations, which is 16

(d) the detection of unstable/weak normal equations by
the Singular Value Decomposition (SVD) method
(Griffiths & Hill, 1985).

From Table 1, it can be seen that, the computation time
taken for the SM method at any window size is less than
those of the ABM. This shows that the proposed
functional model has improved, thus, converges more
quickly even though it has 9 (as opposed to 8 for the
ABM) parameters to solve.

5. DISCUSSION AND CONCLUSIONS

It has been shown that, the internal precision obtained
from the 1SM and 2SM methods is much higher than
ABM for both the plate and the cylinder. This suggests
that the functional model has been improved to fit the
observations more closely.

The use of second order parameters in matching plane
surfaces and for smaller window sizes has been found to
give inaccurate results. This is probably due to
overparametrisation. Therefore, surface model should be
kept simple (only first order) if surfaces to be measured
are plane or working with smaller windows. The accuracy
of the matched coordinates from the 1SM and 2SM
methods was also shown to be higher than the ABM.

This experiment has shown that the conventional ABM
functional model has been improved through the use of a
surface model. This is reflected in the attained accuracy ,
convergence, and computation time. It has also shown
that suitable surface models should be used when dealing
with different surfaces. Comparisons with more complex
ABM methods, such as the geometrically constrained and
global matching would be of great interest.
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