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ABSTRACT

If sufficiently many pairs of corresponding points in a stereo image pair are available to construct the associated fundamental
matrix, then it has been shown that 5 relative orientation parameters and 2 focal lengths can be recovered from this fundamental
matrix. This paper presents a new and essentially linear algorithm for recovering focal lengths. Moreover the derivation of the
algorithm also provides a complete characterisation of all degenerate configurations in which focal lengths cannot be uniquely
recovered. There are two classes of degenerate configurations: either one of the optical axes of the cameras lies in the plane
spanned by the baseline and the other optical axis; or one optical axis lies in the plane spanned by the baseline and the vector
that is orthogonal to both the baseline and the other axis. The result that the first class of configurations (i.e. ones in which
the optical axes are coplanar) is degenerate is of some practical importance since it shows that self-calibration of unknown
focal lengths is not possible in certain stereo heads, a configuration widely used for binocular vision systems in robotics.

1 INTRODUCTION

Relative orientation is the problem of recovering the parame-
ters defining the rotation and translation direction relating
two calibrated camera views from a set of corresponding
image points. This has long been studied by photogram-
metrists [4, 16], and more recently by the computer vision
community [3, 7, 9, 17]. 5 parameters suffice to define the
relative orientation of the two cameras, 3 describing the ro-
tation and 2 the direction of translation. An essentially linear
algorithm for their recovery was proposed by Stefanovic [15]
and revived by Longuet-Higgins [9], based on the coplanarity
constraint between corresponding points. This involves com-
puting the 3 x 3 essential matrix [3] associated with the stereo
pair, either by solving a linear system of equations derived
from eight or more pairs of ‘corresponding points [9], or by
finding the vector associated with the smallest singular value
of the associated system [3, 17]. Once the essential matrix is
available, it can be decomposed into a product of a rotation
matrix and a skew symmetric matrix derived from the base-
line (see [3] for a comprehensive discussion of algorithms for
this).

Given these solutions, the question of how to deal with un-
calibrated cameras has come to the fore in the last few years.
Here, the problem is to simultaneously calibrate the cameras
and recover the viewing geometry from a given set of images,
i.e. to recover both the intrinsic (interior orientation) and
extrinsic (relative orientation) parameters. We shall refer to
this process as self-calibration. Faugeras et al. [2] developed
a model for the interior orientation of a general uncalibrated
pinhole camera in terms of 5 intrinsic parameters. Moreover
a generalisation of the essential matrix, the fundamental ma-
trix [10, 11], can be defined and derived from the data that
is a function of both the intrinsic and extrinsic parameters.
Even if the same camera is used to take both images in a
stereo pair, however, these cannot be recovered simultane-
ously along with the 5 extrinsic parameters from the funda-
mental matrix as this matrix is determined by only 7 inde-
pendent parameters in total. If three or more images of the
same scene taken by the same camera are available though,

then the 10 orientation parameters can be recovered from the
set of fundamental matrices derived from all possible pairs of
images [2]. More recently Niini [12] has presented a promis-
ing new approach for recovering these parameters based upon
setting up linear systems for certain intermediate quantities.

An interesting special case in which self-calibration is possible
from a single pair of images attains when the cameras tak-
ing the images are calibrated up to unknown focal lengths.
In this case there are only 2 unknown intrinsic parameters
(the unknown focal length in each image) in addition to the
5 extrinsic parameters. Since the fundamental matrix has 7
independent parameters there would seem to be sufficient in-
formation to carry out self-calibration. Hartley [6] has shown
that this is indeed possible through an approach based on the
singular value decomposition (SVD) of the fundamental ma-
trix. Pan et al. [13] presented an alternative closed-form ex-
pression for the focal lengths as roots of certain cubics, along
with an iterative least-squares technique for refining parame-
ter estimates [14]. Recently, however, Huynh et al. [8] have
shown that both algorithms fail for certain degenerate cam-
era configurations: in particular, when the optical axes of the
cameras are coplanar the problem becomes degenerate and
unique focal lengths for each camera cannot be determined.
This has some practical importance since in the stereo heads
used in robotic vision it is common for camera motion to be
restricted to vergence only, so that the optical axes and the
baseline between them are confined to the horizontal plane.

The purpose of this paper is to present a new and simpler
algorithm for self-calibration of focal lengths through the so-
lution of a linear system of equations. The approach is sim-
ilar in spirit to that of Niini [12] and rests very much on a
linear algebraic formulation of the problem, but it is based
on a different representation than that used in [12]. It fol-
lows Hartley in using the SVD, but is considerably simpler in
that it does not require solution of any further higher order
systems. Moreover a by-product of the approach is a com-
plete characterisation of degenerate configurations in which
self-calibration is not possible: these are identified as those
configurations which make the linear system singular. In par-

575

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996



ticular we shall show that a necessary and sufficient condition
for the system to be singular is for the configuration to belong
to one of two classes: configurations in which the optical axes
and baseline are coplanar; and configurations in which there
is coplanarity of one optical axis, the baseline and the vector
perpendicular to both the baseline and the other optical axis.

The paper is organised as follows. The next section defines
the notation, sets out the geometry of the problem and re-
views some basic concepts.
self-calibration can be reduced to solving a linear system from
whose solution the focal lengths can be easily calculated. The
fourth section derives conditions under which the linear sys-
tem is singular (so no unique solution exists), and shows that
these correspond to the geometric configurations described
in the previous paragraph. Finally the last section presents
a solution for the special case when both focal lengths are
known a priori to be equal: here, the unknown focal length
can be read off from the roots of a quadratic.

2 PROBLEM FORMULATION

The following notation will be used in the paper. World points
are written in upper case, image points in lower case, vectors
in bold lower case, and matrices in bold upper case. a; de-
notes the j-th column of the corresponding matrix A, while
A;; denotes the i5-th element. In particular, I denotes the
3 x 3 identity matrix and i; denotes the j-th column of I,
i.e. the unit vector with a one in the j-th position and zeroes
elsewhere. (Note that by definition a; = Ai;.) The sym-
bol T denotes matrix and vector transpose, while =T denotes
the transpose of the inverse matrix.” The notation u ~ v
(U ~ V) indicates that the vectors u and v (matrices U
and V) are the same up to an arbitrary scale factor. Finally
entities related to the right image are marked with a ’.

We now define the geometry of the model problem. Figure 1
shows a scene being stereoscopically imaged. The global ref-
erence system O’ — X'Y'7' is taken to coincide with the
coordinate system of the right image, with the origin at the
optical centre. R = R{a, 3, 7) denotes the matrix associ-
ated with a rotation of angles o, 3, v about the X'-, Y-
and Z'-axes, respectively, that renders the left image parallel
to the right image. b = (bs,by,b,)T denotes the baseline
vector connecting the optical centres of the cameras. The
parameters «, 3, v, bz, by, b, are said to specify the relative
orientation of a stereo pair of images. Since the scene can
only reconstructed to within an overall scale factor, it is usual
to remove this ambiguity by assuming that ||bj| = 1, leav-
ing 5 independent parameters to be determined in relative
orientation.

We next assume that the location of the principal point (the
intersection of the optical axis with the image plane) is known
in each image, and that the image coordinate system is Eu-
clidean (i.e. no skewness or differing scales on different axes).
In this case a simple translation of all image points will en-
sure that the principal points coincide with the origins in the
image plane coordinates. Thus the only unknown intrinsic
parameter associated with the formation of each image is the
focal length.

Now let M be a visible point in the scene, and m = (z,y)”
and m’' = (z',3")7 be its projections onto the left and right
image planes. Relative to the global reference system O’ —
X'Y'Z' at C’ and the coordinate system O — XY Z at C,
the points m’ and m can be expressed in vector form as

The third section shows that

Figure 1: Stereo camera setup.

q = (¢',y',—f)T and q = (z,y,~f)*. It is clear from
Figure 1 that the three vectors q, q’, and b are coplanar. This
relationship is encapsulated in the epipolar equation which
relates corresponding image points by

q' - (b x Rq) =0. (1)

Let f > 0 and f' > 0 be the two focal lengths, A and A’
be the intrinsic parameter matrices of the two cameras, and
B be the skew-symmetric matrix containing elements of b.
Then under the above assumptions these matrices have the
form

1 0 0 10 0
A= 0 1 0 , A'=1]0 1 0 ,
0 0 —1/f 0 0 —1/f

)
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B= \ b
and (1) may be expressed in matrix form as
q'"Bq =0, (3)
where E is the essential matrix given by
E = BR. (4)
Now let m’ = (z',4',1)7 and m = (z,4,1)7 be alternative

representations of the image points in homogeneous coordi-
nates. Observe that

q=A""m (5)

q=A"m" (6)
We may now immediately infer that

m'"Fm =0, (7)

where F is the fundamental matrix [2] embodying both ex-
trinsic and intrinsic imaging parameters, and is given by

F=A""BRA™. (8)
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If sufficiently many corresponding points can be located in
the two images, it is possible to obtain a numerical estimate,
Feoi, of the matrix F [11].
up to an arbitrary scale factor (we shall show in the next
section that a sensible choice for this is to scale any estimate
so that |/fs]] = 1 as this is likely to optimise the conditioning
of the linear system defining the solution). In what follows
we shall not distinguish between F and F.,; (i.e. we assume
a sufficiently accurate estimate of F has been obtained), so
that (8) is replaced by

F~A""BRA™. (9)

Thus self-calibration reduces to the problem of estimating the
various extrinsic and intrinsic parameters from F.

3 DERIVING A LINEAR SYSTEM FOR
FOCAL LENGTHS

In this section we shall construct a linear system whose co-
efficients are numerical values derived from the fundamental
matrix, and from whose solution we can easily read off the
values of the focal lengths. We begin the construction by re-
calling the following characterisations of an essential matrix
given in [3].

Proposition 1 The following three conditions are equivalent:

(i) E is-an essential matrix;

(ii) E has one zero singular value and two non-zero and
equal singular values;

(i) EET = I1-bb7.

We next introduce the singular value decomposition (SVD)
of F (see [5] for details). That is, F can be written as

3
F=Usv' =) ouvf. (10)
k=1

Here U and V are orthonormal matrices and T is a diagonal
matrix with entries Xy ok. Since A and A’ are non-
singular, it follows from condition (ii) of Proposition 1 that
01,02 # 0 and that o3 = 0, so that

Fvi = Flu, = 0.

(11)

It also follows from the proposition that b is the unique vector
for which E”b = 0. Therefore from (8) and (11) we have
that

FTu; = A™"ETA" ', = 0, (12)
so it follows that
b = ATy (13)
[A " usl|

We may now combine (13) with condition (/i) of Proposi-
tion 1 to derive the following key equation:

ATFAATFTA’ ~ EET
B A ggufA T
ugA"TA"1u3 ’

(14)

Multiplying on the left by A’"" and on the right by A’
and then multiplying through by the denominator gives
FAATFT ~ (ufA7"A T ug) A TA

—ATTA uFATTATT (1)

Note that F..; is only defined .
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We now reduce (15) to a linear system involving quantities
that are directly related to the unknown focal lengths. To
achieve this, we note from (2) that the matrices AA7 and

A'""TA’™ can be written as

AAT =14 (f7% = Diaif
Ar—TA/—l — I+ (f/2 _ 1)i3if,

(16)
(17)

where, as noted above, 13 is the unit vector (O,O,I)T. If we
define the quantities p and v by

p=f"7-1
v=f"?-1,

(18)

(19)
then (15) can be expressed in terms of x and v as:
F(I+ uisis))FT ~ (1 + v(ud ia)?) (I + visit ) —

(us + v(ug ia)is)(us + »(uiis)is)”.

(20)

On the face of it this equation is quadratic in v, but a little

algebra shows that in fact the quadratic terms cancel. Indeed,

if we introduce the arbitrary and as yet unknown scale factor
A, the system reduces to:

FF” + pfsf] = M1 — usu? ) +

Av [(uf 1)’ = (u3is)(uai] +iaud) +isi3 | . (21)
Gathering up terms and defining the new variables

wi = —f, we=Av, w3=A\

now gives:

FFT = 87w, +

[(ugig)zI — (ugTig)(uai;jF e igu;{) -+ 1313T] wo +

(I—usu?)ws (23)
Formally this system can be written as
Giwi + Gawz + Gaws = Gy, (24)

where the G, are symmetric 3 x 3 matrices constructed from
the data. This gives six linear equations in three unknowns.
The unknowns could be found by a least squares solution, but
more insight comes from making a change of coordinates from
the standard basis defined by the vectors i; to the orthonor-
mal basis defined by the u,. This transforms the matrices
Gy to the matrices G with entries

[Grliy = ul Gyu,. (25)
It is easy to verify that [Gy]is = [Gi]s; = 0 for all i, j and all
k: this stems from the fact that us corresponds to the zero
singular value. Thus in the new coordinate system five of
the equations are identically zero, leaving the following three
equations to be solved for wy,w, and w;.

W20 + ((ufis)? + (ufis)?)ws + ws

gy =
0 = (ugfg)(uleg)wl -+ (u?i3)(u2Ti3)w2
ag = (ungs)zwl + ((Ugi3)2 +(u533)2) w2 + ws

(26)
These equations are formed by computingyukauA,'for 1,7 =
1,2 (and noting that symmetry implies [Gli12 = [Grl21).
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The coefficients in (26) can all be calculated directly from the
data once the SVD of F has been computed. Moreover once
(26) has been solved, the focal lengths f and f’ can be read
off directly from the values of w1, w2 and ws through (18)
and (19). Finally there is a unique correspondence between
focal lengths and coefficients once the arbitrary scale factor
A has been eliminated.

To conclude this section, note that if F is rescaled to &F,
then the coefficients in the vector on the left hand side and
in the first column on the right hand side scale as k2, while
the coefficients in the remaining two columns are invariant.
Hence any numerical estimate of F should be rescaled to en-
sure that (26) is a well-conditioned system. A simple sensible
choice for this is to attempt to ensure that elements in the
first column have roughly the same magnitude as elements
in the other columns (i.e. are of order unity) by scaling F so
that ||fs|] = 1 as proposed in the discussion leading up to (9).

4 CHARACTERISING DEGENERATE
CONFIGURATIONS

We now explore degenerate configurations for which multi-
ple factorisations of the form in (8) may exist with A and
A’ having the form in (2). Assuming the underlying camera
model is correct, by Proposition 1 such a factorisation is pos-
sible if and only if A, A’ and F satisfy (14). As each step in
the remainder of the derivation is reversible, it follows that,
given the special form of A and A’, a unique factorisation
exists for (8) if and only if (26) has a unique solution.

For convenience, let us express (26) formally as s = Cw,
where § = (af,O,a%)T and w = (wi,wz,w3)T. Then it is
a fundamental result of linear algebra that (26) has a unique
solution if and only if C is invertible. If C is not invertible,
then (26) will have either multiple solutions or no solutions
depending on whether or not s is in the range of C. The
case where (26) has no solutions is of little interest. Since
we are assuming we have data from a real world system there
must be at least one solution: assuming that the underlying
camera model is essentially correct, then the fact that s is
outside the range of C can be put down to measurement
errors and appropriate allowances made (e.g. (26) could be
solved in a total least squares sense as described in [5]).

The condition that C is not invertible is equivalent to
det(C) = 0. From (26) and a little algebra we have that

det(C) = [(uf fa)(ui'is) + (us f3)(u3 is)]
[(uifa)(uiis) — (uifs)(uiis)].  (27)

Thus det(C) vanishes if and only if either of the factors on the
right hand side of (27) is identically zero. The next proposi-
tion now interprets these conditions in terms of the geometry
of the imaging system.

Proposition 2 Two focal lengths cannot be uniquely identi-
fied from the fundamental matrix if and only if the geometry
of the imaging system is in either of the following classes of
configurations: '

(i) The optical axes of the two cameras and the baseline
between them are coplanar.

(ii) One optical axis, the baseline and the vector perpen-
dicular to the baseline and the other optical axis are
coplanar.

Proof: We have established that a unique solution is not
possible if and only if one of the factors on the right hand side
of (27) is zero. It remains to give the geometric interpretation
of each of the conditions

[(ul'fs)(ufia) + (i fs)(uiia)] =0 (28)
[(ul'fs)(ufis) — (u3fs)(uiis)] =0 (29)

We first show that (28) is equivalent to the condition that
Fs3 = 0. To see this, note that since the ux form an or-
thonormal basis

3

f3 = Z(u{fg)uk. (30)

k=1
Since FTus = 0, it follows that £ us = 0 and that
(uffg,)(ufig) + (u;ffg)(uQTig) = f3Ti3 = Fsg, (3].)

Thus (28) is equivalent to F33 = 0. Since A™'iz ~ ia and
A’y ~ i, we have that

0 = Fyy = i.Fis =it A’ "BRA i,
~ i BRis
=13 - (b x Ris). (32)
But is is also the unit vector in the direction of the optical
axis in each image expressed in the local coordinate system
of each image. Thus (32) is equivalent to 2’ - (b x z) = 0,
where z and z’ are unit vectors in the direction of the optical

axes expressed in the global coordinate system. This in turn
implies that the vectors z,z’ and b are coplanar.

We next examine (29). If we define the vector g by
g = (u?fg)UQ — (ugfg)ul, (33)

then it is straightforward to check that g is orthogonal to
f3. Moreover since the uy form an orthonormal basis, g
is orthogonal to us. Finally (29) effectively states that g
is orthogonal to is. Since g is non-zero as long as f3 is
non-zero, this implies that the vectors f3,i3 and us must be
linearly dependent (i.e. they are coplanar).

We now show that this coplanarity condition is equivalent to
condition (ii) of the proposition. To see this, it suffices to
show that b and BR.i; are in the subspace spanned by fs, i3
and us. To establish this first for b, note that (2) and (13)

imply
b ~ A7 us = (I—(f +1)isif)us
= b= Aus + /\2i3, (34)
for some constants A1 and Xy. To establish a similar result

for BRis, we first note that the particular form of A implies
that A-1i3 ~ ig. Thus

BRi; ~ BRA i,
=ATA""TBRA i,
= (I-(f" 4+ Diif) A" "BRA s
= A" TBRA s — (f7 + D(ETA T TBRA ) i
= Aofs + Asis, (35)

for some constants A3 and As.
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Since b and BRi3 can be expressed as linear combinations of
f3,is and us and these three vectors are linearly dependent,
it follows that b, BRiz and i3 are also linearly dependent.
But by construction BRis = b x z where z = Ris is the
optical axis for the first image. Thus BRis is the vector
perpendicular to both the baseline and the optical axis of
the first image. Since i3 is the direction of the optical axis
in the second image, we have that the optical axis in the
second image, the baseline and the vector perpendicular to
the optical axis in the first image and to the baseline are all
coplanar. This completes the proof. m]

In conclusion, we have shown that there are two classes of
degenerate imaging configurations in which two focal lengths
cannot be uniquely recovered from the fundamental matrix,
but that in all other cases unique recovery is possible. As
noted in the introduction, the fact that the first class (in
which the optical axes and the baseline are coplanar) is de-
generate is of practical significance, since many existing ar-
tificial vision systems are restricted to such configurations.
The form of the second class has a pleasing symmetry with
respect to the form of the first, but it is of little practical
importance: imaging systems are usually constructed so that
the optical axes tend to be roughly parallel with each other
and roughly orthogonal to the baseline. Note, however, that
it is still possible for there to be significant overlap of the
camera fields of view for configurations in this class.

5 DERIVING A SOLUTION FOR A SINGLE
FOCAL LENGTH

We now turn to the special case where the two focal lengths
are known a priori to be equal: this will occur if a single
camera with an unknown focal length is used to take both
images. For general configurations the problem can obvi-
ously be solved by the algorithm presented above: we are
interested in deriving a solution that will stiil recover the fo-
cal length in some of the degenerate configurations identified
under Proposition 2.

In the case where the
AT so
—1 and

To achieve this we return to (14).
focal lengths are equal a priori, we have A = A’ =
multiplying each side of the equation on the left by A
on the right by A gives

Ik

where X is an arbitrary scale factor. We now show how to
derive a quadratic from this system that will uniquely identify
the focal length f in almost all configurations. To do this we
note that forming the inner products of the matrices in (36)
w.r.t the vectors u; and us gives:

A %uzud

—_— 36
ul A-2u; (36)

FAZFTAZ = ) {I -

ulFA’F A%y, = ul FA’FT A%u,.

A

(37)

Recalhng (16), setting & = (72 —1) and noting that u} F =
oxv} shows that (37) can be written as

FT(I+4 pisil )us =
FT(1+ piaif Jus.

o1vi (I+ piail)

02vy (T4 pisif) (38)

Expanding out both sides of the equations and collecting
terms gives the following quadratic in u

579

2 2
— 02 +
[ ((ufis)? + (viis)?) 0F — ((u3ia)® + (v3 ia)?)

(ugi3)(vgi3)0‘2] F33 p,?ﬂ

Gi]ywt

[(ul is)(viis)or — (39)

This quadratic has at most two solutions unless all the co-
efficients vanish identically. If the highest order coefficient
does not vanish we have observed that the roots u1, u2 of the
quadratic always appear to be real and satisfy p1 < —1 < pa2,
but have not been able to prove this. If this does indeed hold
true, (18) shows that this will give one real and positive focal
length and one imaginary focal length: the latter can be dis-
carded immediately leaving the former as the unique solution.

Thus more than two solutions will only occur if all coeffi-
clents vanish. A necessary condition for this is that o1 = o2,
i.e. that the matrix be an essential matrix. This by itselfis not
sufficient, however a complete analysis of exactly what con-
figurations will achieve this is not attempted here: we simply
note that they are likely to be rather special configurations
that are already known to be degenerate, such as when there
is no rotation (see [1, 2] for a more detailed analysis of these
situations).
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