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ABSTRACT

This paper deals with the projective block adjustment method developed at Helsinki University of Technology. Especially, the
question how the radial distortion is corrected in the method is discussed. The method is based on the projective singular correlations
between the images in the block, and it can be used to obtain a 3-D orthogonal coordinate system for an arbitrary block of images.
Linear distortions do not cause any problems in the computation of the singular correlations, and they can be determined .from the
singular correlation parameters afterwards. Nonlinear image errors, such as radial distortion, instead, cause significant error in the
determination of the correlation parameters. This effect makes it also possible to determine the radial distortion simuitaneously with
the singular correlation parameters.

The solution of the radial distortion requires approximate interior orientation to be known, and an improved interior orientation is
computed afterwards from the singular correlation parameters. The cycle can then be repeated, and a rigid solution can be obtained,
bringing the whole block into an orthogonal 3-D coordinate system which is free from:nonlinear distortions caused by the radial
distortion of the images. The resulting coordinate frame can then be utilized in further 3-D reconstruction of the scene, for example,
using digitized video images.

1. INTRODUCTION In the new block adjustment method, however, to keep the

. method similar to the older version, they are solved in a cyclic
This article describes a method to obtain full orthogonal 3-D iteration. First, solve the singular correlations with the radial
model coordinate system using pure image information only. distortion coefficients using approximate interior orientation.
The method is based on the projective singular correlation Second, solve the interior orientation only. Usually with small
between the images taken from the same object. Singular radial distortion, only the approximate image center is needed.
correlation is also known in the computer vision society as the ~ Repeat the procedure until the radial distortion and interior
epipolar transformation /Maybank et al., 1992/, orientation do not any more change significantly.

The principle of the method was presented in /Niini, 1994/, and Starting from reasonable approximate values, the total iteration
in /Niini, 1995/. Now, the method has been extended so that converges satisfactorily in a few loops. However, the total
possible radial distortion of the images can also be computed. number of iterations may still be much larger due to the nested
This is a significant improvement since radial distortion is iterations since both steps are also iterative.
usually quite large when video cameras are used.

The radially undistorted image coordinates are also obtained,
The original projective block adjustment method has four and the resulting interior orientation corresponds to the one
sequential parts: solution of the singular correlations, solution of which transforms the undistorted image coordinates to the ideal
the interior orientations, solution of the rotation matrices, and image coordinates which strictly fulfil the collinearity
the solution of the relative positions of the images along with conditions. The least squares solution of the system is based on
the model coordinates. The original method assumed the images the minimization of the noise in the original image observation
to be free from nonlinear distortions, or possible nonlinear space.
distortions had to be corrected in advance /Niini, 1994,1995/.

The third and fourth parts of the block adjustment method, the

2. NEW BLOCK ADJUSTMENT solution of the image rotation matrices, base vectors and model

coordinates remain the same as before, except that the image
The solution of the radial distortion requires approximate interior coordinates used in these steps are now free from the radial
orientation to be known. This means that the solution of radial distortion making it possible to obtain pure orthogonal 3-D
distortion and singular correlations, and the solution of interior model coordinate system without control points or a priori
orientations should actually proceed simultaneously. information about the block geometry.
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Finally, the block parameters can further be enhanced in a
general, simultaneous adjustment, presented in chapter 5.

3. COMPENSATION OF THE RADIAL DISTORTION

The solution of the radial distortion is based on the fact that the
singular correlation between two images should produce:zero
when only linearly deformed images are used. Any deviation
from zero, exceeding of course, the random noise due to the
observational errors, can then be interpreted as the effect of
nonlinear errors /Niini, 1990/. For example, using video
cameras, the radial distortion is usually significant. In practice,
it has also been shown to be sufficient to model the nonlinear
distortions with one parameter only, namely with the parameter
corresponding to the third power of the radius /Melen, 1994/.
Decentering or tangential distortion need not to be considered
here, because they are practically too dependent on the principal
point which, in turn, is allowed to change in this block
adjustment.

3.1 The camera model

A physical camera model is assumed. The properties of the
camera are: first, the lens may cause nonlinear (radially
symmetric) distortion to the ray of light when it passes through
the lens; second, the distortion caused by a poorly known sensor
geometry is linear. Thus, all linear distortions happens only after
the nonlinear ones. The compensation of the distortion should
then take place in the reverse order, not simultaneously.

The physical model used here is not exactly the same as the
traditional "physical model" in /Kilpeld et al., 1981/. The
traditional model treats linear and nonlinear distortions
simultaneously, which works well using aerial images with small
linear distortions, but it may be considered erroneous using
video images with apparent linear distortion /Melen, 1994/.

3.2 Elliptic radial distortion

When computing the singular correlations, it is not necessary to
compensate the linear distortions in advance since the interior
orientation can always be computed after - the singular
correlations have been computed but not before. Instead, it is
preferable just to find a suitable expression for the nonlinear
distortion in terms of the linearly distorted observations.

To obtain the required expression, it is first studied how the
final, radially and linearly distorted observations X, y,. are

formed from the ideal, undistorted image observations x;, y;:

22 44
x, =X, +k X, (r; 1) +kox (r; -1g) +...,

e8]
¥.=Y, +k1yl(ri2 —rﬁ) Jrkz)((ri4 —rg) +o.,
and
I Eyr R
f‘ (2)
Yie = yp+ _l—l-yr .
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Above, ri=1/x12 +yi2 is the radius computed from the principal

point, and k,, k,,... are the radial distortion parameters, r, is the
radial distance where radial distortion effect is wanted to be
ZE10. Xy Yps are the principal point coordinates, o is affinity
(scale ratio between the x- and y-axes of the image coordinate
system), and B corresponds to the non-orthogonality angle
between the image coordinate-axes. The radial distortion model
is adopted from /Karara, 1989/.

The observations X, y, are measured and they are subject to the
random observational errors. The term 1, with a certain nonzero
value is useful in the adopted model because it prevents the
system to collapse into a trivial solution where the magnitude of
the radial distortion correction becomes as large as the image
coordinates themselves. Fixing r, also fixes the image coordinate
scale since, for a certain radial distortion profile, the camera
constant depends on r,, and of course, on the radial distortion
coefficients k; /Brown, 1968/. A suitable value for 1 is, say 200
pixels, in a 512 x 512 pixel* image.

By replacing the inverse of (2) into (1), and after some
manipulations it is obtained

2 2
Xg =X, + 1(1()(n~)(p)(re ~Ig)*..es

Ya = Ve * Y@ ) e

3)

which express radially distorted observations as functions of the
radially corrected (but linearly distorted) observations x,, y, and
of the interior orientation parameters. Especially,

r =/ (x X+ (@ By, ¥, 2B (x, X ) (Y.,

is the elliptical radius computed from the point X, y,. Equation
(3) presents the elliptical radial distortion model, because for all
equidistant image points the corresponding radial distortion
pattern is elliptically symmetric, as seen in figure 1. It also
expresses the radial. distortion effect directly in the linearly
deformed image coordinate system as required.
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Figure 1. Elliptical radial distortion.
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From now on, only the first term of the distortion function is
taken into account because it is, using video cameras, the only
significant parameter /Melen, 1994/. Nothing really prevents one
to include the other terms in the model, too.

The approximate radial distortion correction is

dx = k(x, —xp)(rz —rg)

e T0 4)
dy = k(y, -y )t 15

and solving the equation (3) for x,., y,, it is also obtained
x, = x;~ dx )
Ye =¥a~dy

which give approximate values of the radially corrected image
coordinates during iteration,

3.3 Solution of radial distortion

Let

©®

be the singular correlation equation of two images which are
only linearly deformed. M is the 3x3-singular correlation matrix
containing seven independent parameters. See /Niini, 1994/ and
/Niini, 1995/ for details concerning the parameterization of M.

Now, expressing x.’, y.’, X,", ¥, with equations (5) and (4), and
replacing them into (6), the resulting equation is obtained

T
- lx kGl )| k- x )k 1)
/ ! " - (N
yi-Gly k@ )| My~ -y ke )| 0
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This is the singular correlation condition containing the radial
distortion parameters. Differentiating equation (7) with respect
to the unknown parameters and observations, a general system
of type Ax+Bv=lis obtained, which can be solved as explained
previously in /Niini, 1994 and 1995/. The only exception is that
in each iteration step, new radially corrected observations x,, y,
have to be iterated, because they are also used in the
computation of the correlations.

Using two images only, it is possible to solve the common
radial distortion if the approximate interior orientation
parameters are known. Because radial distortion is a fixed part
of the interior orientation, like the camera constant, the
solvability of it follows the rules concerning the solution of
interjor orientation from singular correlations.

For example, if the interior orientation is not known, at least
three images are required to solve the unknown interior
orientation and the radial distortion of the images. With two
different cameras, at least two images must have been taken

with both cameras. Using more images and thus more singular
correlations in the block, it is also possible to solve different
radial distortions of different cameras, provided that the
minimum requirements for each different camera are fulfilled,
and the block geometry constraints the solution sufficiently.

Special cases. Large radial distortion can be utitized to solve for
the approximate principal point in the very first step of the
adjustment. This is reasonable if the approximate image center,
for some reason, is too far from the true principal point.

Decentering terms of the radial distortion are derived from
equation (3), with one radial term only:

X, *+ klxc(r: —rg) —klxp(r: —rg)

Yo + Ky (e -10) Ky, 2 -10)

X4

Yn

®

1}

_and taking p;=k;x,, p,=k;y, as additional decentering terms.
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Then the principal point is computed from x,=p,/k and y =p,/k.
Thus, if the radial distortion parameter k, is large enough, a
substantially better approximate center for the image is easily
obtained. In later iterations, these decentering terms can be
ignored, and the determination of the principal point can be left
in its original place in the block adjustment.

4. COMPENSATION OF LINEAR DISTORTION

After radial distortion and singular correlation parameters have
been determined, the interior orientation can be computed, using
the iterative way presented in /Niini, 1993/ or /Niini, 1994/.

The resulting linear transformation from linearly distorted
coordinates to the ideal image coordinates is the following.

X = (%) + By, -yp)
Vi = a(y, Yy

%

®

where c,, the camera constant, is now also dependent on the
choice of r,. Other terms are the same as in equation (2).

5. GENERAL BLOCK SOLUTION

Finally, a general and one step adjustment can be made for all
the block parameters based on the following factorization of the
singular correlation matrix, adopted from /Niini, 1994/,

M=C,R/(B,-B)R,C, (10)

This factorization expresses the singular correlation matrix
between two images in terms of the upper triangular interior
orientation matrices C,, C,, orthogonal rotation matrices R, R,,
and skew symmetric base matrices B;, B,, both of which contain
the three projection center coordinates of the corresponding
image. All matrices are 3x3-matrices and their initial values are
obtained from the projective block adjustment.
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This form of M can be put into the equation (7) which gives the
observation equations used to solve all the block parameters
simultaneously, including the radial distortion. This
mathematical model is coherent and more stable than the
sequential method because it directly contains the physical
orientation parameters of the block, without any intermediate or
fictitious parameters. A least squares solution based on (7) gives
also the cofactors and weight coefficients of all the parameters
at once which would be hard to compute using the sequential
method alone.

This method resembles the bundle block method, except that no
bundles have to be formed. Further, no model or object
coordinates are needed. They can be solved afterwards by
intersecting the corresponding projection rays.

6. EXAMPLE

The method was used to calibrate six real images taken
automatically with the Mapvision (TM) photogrammetric station.
The images were of size 512 x 512 pixels. The common
calibration of the cameras was determined with the method
described here, except that the final enhancement using (7) was
not made, yet. A total of fifteen singular correlations were
obtained. All correlations were taken into account in the
computations, and a reference variance of s,;=0.157 pixels were
obtained.” The interior orientation values obtained were
x,=273.710, y,=257.425, c,=827.623, 0=0.6848, and k=-
0.2473*%10° (r,=100 pixels). B was fixed to zero. The root mean
square error of the model coordinates was 0.261 pixels. All
values are reasonable, compared to previous experiences with
the Mapvision calibration with the free net bundle block method
/see Haggrén et al., 1989/ especially designed to calibrate the
Mapvision system.

7. CONCLUSIONS

This article deals with the projective block adjustment method,
based on the singular correlation. The method has been extended
to contain the radial distortion parameters. The projective block
adjustment can be used to solve the relative orientation of a
image block, without knowing any information of the block
geomelry in advance.

Radial distortion is solved using an elliptical radial distortion
model, and it requires at last the approximate principal point to
be known in advance. The solution is obtained in the very first
part of the method, in a two step iterative process. The first step
contains the determination of both the radial distortion and
singular correlation parameters using approximate interior
orientations. The second step contains the determination of
improved interior orientations. These two steps are repeated until
the solution converges. The determination of the rest of the
block parameters, such as the image rotation matrices and
projection center coordinates, is the same as presented in earlier
articles. Finally a general and simultaneous least squares
adjustment can be made to the block parameters which,
typically, will slightly improve the sequentially obtained
solution, and is can be considered useful because it gives the
weight coefficients and cofactors of all parameters at once.

The method seems to work satisfactorily with both synthetic and
real data, provided that the block geometry is well defined.

The whole block adjustment method is intended to-be a part of
a video based measurement procedure /Niini, 1995/, where
building interiors are digitized from video stereopairs and
transformed to a common orthogonal 3-D coordinate system,
determined with the method presented here.
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