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ABSTRACT

Stereo image matching is reconsidered from the viewpoint of full-information exploitation via a uniform transformation of
information through scale space. We consider the general stereo situation where both interior and relative orientation of two
images are unknown. It is shown that wavelet multiresolution analysis provides an adequate transformation and representation
of image signal information with desired properties such as good space-frequency locality and information preservation. in
particular, complex conjugate wavelets are used for phase-based matching. Technically, this paper presents a basic procedure
for top-down matching two stereo images using complex conjuage wavelet pyramids for the standard case where two images
may have a lower bound of stereo overlapping of 60% and relative rotation around principal axis is small. A strategy of spiral
paraliax propagation is developed for tackling the unknown partial correspondence on the top level. A complete example on

matching two real aerial images is shown.

1 INTRODUCTION

Image matching may be considered as the central and most
difficult problem in photogrammetry and stereo vision for sur-
face reconstruction from multiple images. It has. received
great attention from many photogrammetrists and computer
vision specialists, as well as researchers from pattern recogni-
tion and artificial intelligence over last three or more decades.
The problem is extremely hard to solve perfectly, partly be-
cause the problem domain of image matching in general is not
a closed one, partly because of the lack of adequate funda-
mental mathematical and informatic theories and tools for a
thorough understanding of the information-processing mech-
anism throughout the image matching process.

Due to the length limit, this paper does not give a compre-
hensive overview on the related literature of general image
matching and wavelets. Briefly, existing approaches for stereo
image matching may be classified into several clusters accord-
ing to the choice of matching primitives, matching criterion
and strategies as follows.

Signal Correlation

The most obvious approach to stereo image matching is to
correlate two image functions over each pair of local areas. It
is thus often called image correlation, or area-based matching,
etc. This is perhaps the earliest approach, and obviously an

engineering solution. (Heleva, 1976; Ackerman, 1984)

Feature Matching

Feature matching was introduced naturally to overcome
the inabilities of area-based signal correlation by attempting
matching only on information-rich points or more complicated
primitives such as edges, regions, etc. It was inspired by the
studies on biological vision (Grimson, 1981; Fdrstner, 1986)

Global Matching

Instead of matching local areas or features separately, the
approach of global matching attempts to match all pairs of
homologous image points or features within a simultaneous
framework, typically via least-squares adjustment or other re-
laxation procedures (Griin, 1985; Poggio et al, 1985; Rosen-
holm, 1987; Rauhala, 1987; Barnard 1989; Zhang et al 1992).

Object-Space Image Matching

Object-space image matching, so-called typically by pho-
togrammetrists, assumes a coherent facet model of the scene
surfaces a priori. This is largely true for the terrain viewed
from a relatively high altitude in aerial photography (Ebner
et al, 1987; Wrobel, 1987; Helava, 1988, Heipke, 1992).

Image-Domain Approach Revisited

The approach that we are proposing here, briefly called uni-
form full-information image matching, may be considered as
a natural development of the three image-domain approaches
(signal correlation, feature matching, and global matching).
We rely on exploiting the full information beared in the im-
age signals. We require the representation of image signal
information to be uniform through scale space. We do not
distinguish explicit features such as points, edges/lines, re-
gions, textures, shading, etc; instead, we use full-information
representation which may be considered as implicit feature
vectors. In particular, we use wavelet multiresolution analysis
(wavelet pyramid) as information representation of image sig-
nals for image matching. We also use general effective match-
ing strategies inspired by biological vision. Large continuity
and minor discontinuity of parallax field is also considered in
practical algorithms.

2 UNIFORM FULL-INFORMATION IMAGE
MATCHING

The notion of uniform full-information image matching may
be best described briefly as follows. A digital image is a func-
tion f(z,y) on a 2-dimensional support. For image matching
or in general, pattern recognition, a representation of f(z,y)
is to be chosen in such a way so that the constructs in the
new representation may be related to salient information of
the original signal function f(z,y). In general, let us as-
sume f(z,y) is to be represented by a vector of projections
of f(=,y) onto n basis functions ¥,(z,y)

f(fl?,y)_*(al,(lQ,.‘.,(ln) (1)
a; = < f(z,y),¥i{z,y) >, 7=1,2,...,n (2)
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where < -, > denotes the inner product of two functions,
a;'s are called the representation coefficients.

By appropriately choosing the basis function v;'s, we intend
to extract salient information of f(z,y) in the form of the
coefficients a;'s. A representation of the form (1) is said to
be a full-information representation if with a;’s computed via
(2), the equation .

f(I>y)=F(a’laaQy"'7an;¢1)¢27"':¢n) (3)
holds, where F() is a computable function. An example of
(3) is that when ;s constitute an orthonormal basis, we
have a simple reconstruction procedure

Flo9) = a;%5(z,) (4)

A representation of the form (1) and (3) is said to be uniform
because each representation coefficient a; is defined and com-
puted with exactly the same simple mathematical form of (2).
With some contrast to previous image-domain approaches, we
do not scrutinize on the explicit interpretation of the repre-
sentation coefficients, which may highly nonlinearly relate to
intensity differentials, textures, shading, surface reflectance
variations, etc.

For image matching purpose, it is desirable if the representa-
tion of the form (3) has properties of good dimensional or-
thogonality, discriminative uniqueness, space-frequency local-
ity, multiresolution adaptivity, and computational efficiency
and robustness. For the particular problem of stereo match-
ing, we may also require the information representation and
matching strategies to be invariant to translation, rotation,
scale and partial correspondence between two stereo images.

Fourier analysis is a classical example of the uniform and
full-information representation, which, however, is known to
be very poor in spatial locality. Wavelet analysis is a new
approach in this sense, as fundamental as Fourier analysis,
but with inherently good locality in both spatial and frequency
(scale) domain and a number of other desired properties.

3 WAVELETS AND COMPLEX WAVELETS

In this section, we briefly draw the essentials of wavelet theory
and lay the mathematical foundation of this image matching
approach.

3.1 Woavelet Transform and Wavelet Pyramid

The wavelet transform is a relatively recent development in
mathematics and signal processing (Grossmann and Morlet,
1984; Mallat, 1989), as a signal decomposition approach to
overcome the shortcomings of the window Fourier transform.
This decomposition is to project the signal f(z) onto a fam-
ily of functions which are the dilations and translations of a
unique function ¥ (z). The function ¢(z) is called a wavelet
and the corresponding wavelet family is given by

Ye,e(z) = Vs(s(z — 1)), (s,t) € R (5)

where R denote the set of real numbers, s and ¢ are called the
scale and translation respectively. Let L*(R) denote the vec-
tor space of measurable, square-integrable one-dimensional
functions f(z). The wavelet transform of a function f(z) €
L*(R) with a given wavelet ¢ is defined by

<+ oo
Wf(s,t) = / F(&)bor(z)dz =< f(z), $ox(z) > (6)
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A wavelet transform as defined in (6) can be interpreted as a
decomposition of a signal f(z) into a set of frequency chan-
nels having the same bandwidth on a logarithmic scale.
Under a certain condition, f{z) can be reconstructed from
its wavelet transforms W f(s,t). The adaptivity to scale s
and translation ¢ leads to its good locality in both frequency
and spatial domain, a property desired by image matching
algorithms.

For a special class of functions, the redundancy of the con-
tinuous wavelet transform (6) can be cleared by discretizing
both the scale factor s and the translation t,

o= 517 and t = &, with (j, k) € Z* )
where Z denotes the set of integers, the wavelet family
wae) = =5, GRET @

is called dyadic discrete wavelets.

In the dyadic scale space of the form (8), let A;f denote
the approaximation of a given function f(z) at a scale s =
2—1;. In practice, we only consider a limited number of levels
7=0,1,2,...,n, for some n chosen to be the coarsest level,
corresponding to'the smallest scale s = .an_ Let D; f denote
the difference between two approximations A;-1f and A;f,
ie.

Dif=A;_1f—A5f, i=12,...,n (9)
where Ay is an identity operator. The function f(z) can be
decomposed as

fz)=A1f+Dif
=Axf+Da2f +Dif

=Anf+ Y Dif (10)

k=1

It was proved that a multiresolution analysis can be realized
by a scaling function ¢(z) and its associated wavelet function

¥(z),
+ o0

Aif(r)= Y < f(u),8(v) > $5k(z)

+ oo
Dif(z)= Y < f(u),¥sk(u)>p;k(z)

k==—00

(11)

(12)

where
1 z—k

VTl
and ¢, x(z) has the form of (8), which relates to ¢;,x(z) by.
(14)

where ¢ denotes the Fourier transform of the function ¢, H is
the transfer function of ¢, H denotes the complex conjugate
of H.

éix(z) = Gk eZ  (13)

P(2w) = e H(e—)p(w)
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For a 2-D image function f(z,y), a multiresolution analysis
can be written as

fle,y)=Arf+Diaf+Diaf +Disf
=Aof+Dosf+Dopf+Doaf
+-D],lf+.D1y2f+D1,3f

= Anf+ Y [Djaf+Dyaf+ Diaf]  (15)

j=1

Each approximation A;f(z,y) and difference component
D; pf(z,y) can be fully characterized with a 2-D scaling func-
tion ®(z,y) and its associated wavelet functions Up(z,y),
p=1,2,3,

+ oo + 0o

Afmy) =D Y ak®ya(z,y) (16)
k==—00 l=—00
-+ 00 + oo
Dipfy)= D > dipri¥pra(z,y) (17)
k=00 l= =00
where
1 z—k y—1 .
k(2. 9) = 5 (= ), (kD) € Z° (18)
1 z—k y—1
q’J,P,k:l(Iay) = Z_J\IJP(T’ 27 ) (19)
aj ket =< f(z,9), ®55,0(z,y) > (20)
djpt =< f(2,9), ¥ pri(z,9) > (21)

For a separable multiresolution analysis, the scaling function
®(z,y) and wavelet functions ¥p,(z,y),p = 1,2,3 can be
written as

®(z,y) = ¢(<)¢(v) (22)
Vi(z,y) = é(z)d(y) (23)
Va(z,9) = ¥(2)d(y) (24)
Va(z,y) = ¢(2)¥(y) (25)

where ¢ is a one-dimensional scaling function, % is the 1-D
wavelet function associated with ¢. Apparently ¥, ¥,, ¥,
extract the details of the 2-D image function f(z,y) in the
y-axis, x-axis and diagonal directions respectively.

The representation (15) may be vividly called the wavelet
pyramid of an image f(z,y). Given a discrete image f(z,y)
with a limited support £ = 1,2,...,ma, y = 1,2,...,my,
the actual procedure for constructing this pyramid involves
computing the coefficients ajx1, djpr,i, which can be
grouped into four matrices A;, Dj,, p = 1,2,3, on each
level 5

Aj = (aj:k:l)(kzl,z,,,,,ﬂl;l=1,2,“.,ﬂ3—’-) (26)
27 27
Djp = (dj,P,k:l)(k=1,2,,,,'md:l’g}m’ﬂa) (27)
27 27

Let 2 and g be the impuise response of the filter ¢ and ¥, the
coefficients aj x,i, and d; px,1, p = 1,2,3, can be computed
via an iterative procedure. The wavelet pyramid of image
f(z,y) and its constructing process are illustrated in Fig.1.
(]2 means dyadic subsampling).

621

D\I
Dy

AZ DZJ

Dyz | Dy
A 1 Dl W1
Dl 2 DI 3

f(x,y)

Figure 1: Wavelet pyramid of an image f(z,y) (left) and the
flowchart for the analysis from level j — 1 to level 5 (right)

3.2 Complex Wavelets for Phase-Based Matching

Wavelet pyramid is ideal for scale adaptive image matching as
it has the advantage at the good locality in both spatial and
frequency domain. However, wavelet pyramid of an image is
neither translation-invariant, nor rotation-invariant. At this
stage, let us concentrate on the translation-invariance prob-
lem, while assuming that either the rotation angle v of the
matched image about its principal axis relative to the refer-
ence image is small enough, or two stereo images have been
resampled along the epipolar lines.

The wavelet pyramid of real-valued wavelets is not
translation-invariant implies that the phase information is not
readily represented. In order to explore the phase information
in the image signals and still on multiscales, complex-valued
wavelets are a suitable representation as the translation in
the spatial domain is represented as a rotation in the com-
plex phase domain. This gives rise to the interpolability of the
wavelet transform, yielding the possibility of subpixel match-
ing through the multilevels of the wavelet pyramids.

The complex wavelets used in this work were designed by
Margarey and Kingsbury (1995), first used for motion estima-
tion of video frames. Bergeaud and Mallat (1984) proposed
similar complex wavelets. It should be pointed out that the
similarity distance measures and various matching strategies
to be described in the following sections are not limited to
those particular wavelets used in this work, they may rather
be generally applicable with other well-designed wavelets with
good properties.

For general image matching purpose, we require the wavelet
filter pair (&, g) (impulse response of the scaling and wavelet
function ¢ and ¥) to be compactly supported in spatial do-
main, regular (differentiable up to a high order), symmetric
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(leading to linear phase). Orthogonality mostly cannot be
strictly emphasized in practice.

For the particular complex wavelets used in this work, the im-
pluse reponses g of the wavelet function and & of the scaling
function are a complex pair of even-length modulated win-
dows.
g(k) = byw; (k + 0.5)e'r(k+0:%)
h(k) = by b1 (k + 0.5)e @1 (++0:5)
(k= —nw,—nu+1,... 0y —1)

(28)
(29)

where b; and §; are complex constants, w; and 1 are a pair
of real-valued low-pass windows of width 2n.,,, symmetric
about k = 0 and decaying to zero at each end. A commonly
used one of this type is Gaussian

) (30)

Due to the compromise between the good locality of match-
ing and information sufficiency, the minimum width of win-
dow functions should be 4, thus n, = 2. The modulation
frequencies w1 and @; should be complementary

2

2

]Z >, w1 (k) = exp (-— k

wl(k) = €exXp <_ﬂ 2&%

(31)

in order to cover the frequency range [0, 7]. Because ¢ and
¥ are a pair of low- and high-pass filters, we have w; > &;.
With the Gaussian window functions defined in (30), the
Fourier transforms of g and h have conjugate symmetry about
the modulation frequencies wy and @;. Since real 1-D signals
have conjugate symmetric spectra, the neglect of the nega-
tive half spectrum [—m, 0] does not exclude any significant
information about a real 1-D input. Ideally, a maximum cov-
erage on the frequency range [0, 7] without significant gaps
and with minimal overlap can be effective achieved if on each
level j,

wi+o =7

w; =30, (32)
thus, by (31), we have the modulation frequencies on the first
level (bottom-up)

(33)

= —
T %
Ideally, the modulation frequencies are to be decomposed

through levels

Wy—1
2

Wy = (34)
In practice, if Gaussian windows of (30) are used, the fre-
quency decomposition through levels approximates asymp-
totically to (34).

Using the 1-D complex wavelet and scaling filters defined
by formulas (28)-(29), we can implement the 2-D complex
wavelet analysis in the same separable way as described in
section (3.1). The 2-D wavelet filters so formed will be pre-
dominantly first quadrant filters in the frequency domain. As
real discrete images contain significant information in the first
and second quadrant of the unit frequency cell, we need to
use the complex conjugate filters § and % in addition to ¢
and & in order to produce a mirror set of difference coeffi-
cient matrices [)]-,p, p =1,2,3, for each j-th level, containing
the second quadrant information.

622

The algorithm for the complex conjugate wavelet analysis of
an image is similar to the one shown in Fig.1. The wavelet
analysis from level § — 1 to level 5 correspond to transform-
ing two complex approximation submatrices to eight complex
approximation and difference submatrices

{Aj—l)fzij—l} L {AJa AJF Dj p, beP’p = 1>2$3} (35)

where A; is the mirror of A;, and D is the mirror of D; .
The algorithm is illustrated in Fig.2 - 3.

B, | &, Ay | Dy,
Dsz By Dy ;i Dy
]321 A, Az Dz.x
132,2 ]32.3 Dz,z Dz.s
D, A, A D,
D.s D D D,

f(X,y)

Figure 2: Complex conjugate wavelet pyramid of an image

f(z,y)

Figure 3: Flowchart of complex conjugate wavelet analysis
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4 SIMILARITY DISTANCE AND CONTINUOUS
MATCHING

Using the complex conjugate wavelet analysis, we can define
the similarity distance S;((=, y), (¢, y')) for any pair of image
points on the reference image (e.g. left) f(z,y) and the
matched image (e.g. right) f'(z',y’). We shall use 2’ to
denote any thing on the matched image corresponding to z
on the reference image.

4.1

On a given j-th level of the wavelet pyramid, for a given po-
sition (z,y), we have 8 coefficients of complex conjugate
wavelet ~ analysis
(As(z, ), As(z, y)v;DJ}P(Iu ¥), Djp(z,y), p = 1,2,3).
Note that A, and A; are approximation components whose
information are further decomposed onto the next higher level
J-+1. In order to match two images on the j-th level, the sim-
ilarity distance can be defined using only 6 differential com-
ponents Dj,p(z,y),ﬁj,p(z,y),p =1,2,3. For image match-
ing to be invariant to local image intensity, a normalization
proved, with real image data, to be adequate, which leads to
the implicit feature vector B;(z, y)for each position (z, y)

‘ _ (Dia(z,9) Dje(z,y) D;a(z,y)
B =G o Tl A, ol
Djyl(z’y) f)j,z(x,y) Djﬁ(%?/))

145z, 91" 14 (2, 9)] " | 4;(x, 9)|

where |.| denotes the module of a complex number. The

components Bj ,,p = 1,2,...,6 are also called subbands of
wavelet analysis.

Implicit Feature Vectors

(36)

4.2 Standard Similarity Distance

In the standard case where the relative rotation angle v is
small enough, a similarity distance S;((z,y), (z',3")) can be
defined as

Si((,9), ("9 =Y Sipl(z,0),(a',y)  (37)

p=1

where Sj s are the subband similarity distances, defined by
Sie((2,9), (2", 9)) = |Bjn(2,9) — Bj »(a",y")* (38)

In a top-down hierarchical matching scheme, for an image
point (z = k,y = 1), (k,1) € Z?, on the reference image, we
may know its approximate correspondence (2’ ~ k', y' = I')
on the matched image. The precise correspondence may be
somewhere (z',y') around (&', 1'):

Fk D = (K + ' +v) (39)
where (u,v) € R?, denoting the differences
u=1zg—k v=y =1 (40)

Note (k,1) and (k’,1’) take integer coordinates in the down-
sampled image on the level 5. With this approximation, the
subband similarity distance is reformed to

Sﬂyp((k’ 1, (k/ +u, U+ v)) =
|1Bsp(k, 1) = B p(k' +u, ' + )" (41)
The best matching point in the simplest sense corresponds to

rgiy Si((k, 1), (k' + u, ' 4+ v)) (42)
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4.3 Continuous Interpolation for Fine Matching

In order to minimize the similarity distance S;((k,1), (k' +
u,1'+v)) in (42), we need to interpolate B} , (k' +u,I' + v).
Ideally, we should use four integer-indexed positions surround-
ing (k' +u, ' +v), which leads to complicated interpolation
and minimization procedures. If we limit jul, |v| < 0.5, we
can use single nearest neighbor (k’,1') with a phase shift rel-
ative to the spatial shift (u, v),

B (K +u, '+ v) & B (K, 1)e® () (43)

where £2; , denotes the pair of the modulation frequencies (in
x- and y-directions) for p-th subband D , on the j-th level,
given by (forp =1,2,...,6)

(@5, w;), (w5, @5), (ws,w;), (=@, w;5), (—wj, @), (—wj, wy)
where w;, @; are given inductively by (32) - (34).

It can be shown that with the continuous interpolation of
(43), the similarity distance can be written as

Si((k, 1), (K +u, 7 +v)) = s1(u — uo)® + s2(v — v0)°
+s3(u — uo ) (v — vo) + sd4)

where the coefficients s1, 82, 83,54, u0,v0 can be com-
puted directly from given data Bj;,(k,1), B (K',1'), p =
1,2,...,6, and (w;,®;). (uo,v0) is the minimum point of
the similarity distance surface S;. s1, s2, s3 are the curva-
ture (second derivatives) along z-, y-, and diagonal directions
respectively, characterizing the uncertainty of the estimate
(w0, v0). s4 is the minimum value of the similarity distance
S, .

4.4 Local Parallax Continuity and Generic Pattern
Matching

For the robustness of image matching, local parallax conti-
nuity should be taken into account when matching two given
positions (k,1) and (k’,1'). To maintain a compromise be-
tween fine locality of matching and robustness of matching,
we could define a new similarity distance P;((k,1), (¥',1')) in
the sense of generic pattern matching

Pj((k,l),(lc',l’)) =
Z‘Z}i“sj((k +r0+0), (K +r+ul +ct+v)) (45)

(re)

(r,¢) € [(0,0),(=0.5,-0.5),(=0.5,.5), (0.5,~0.5), (0.5,0.5)]

where (u,v) is a fine-tuning shift vector, which is varia-
tional for each (r,c) pair. Note that (k + r,{ + c) with
r,¢c = 0.5 or — 0.5 correspond to diagonal positions which
can also be computed with rigorous bottom-up wavelet trans-
form. Similarly, a normal position (k,1) may be matched to
a normal (k',1') or a diagonal position (k' +r,1' +¢).

5 SPIRAL AND HIERARCHICAL PARALLAX
PROPAGATION

5.1 Spiral Parallax Propagation

Without loss of generality, let us consider a stereo pair of
square images with size 2" x 2". With minimum overlap-
ping of 60%, the central area (e.g. 2 X 2 on the level of
8 x 8) on a chosen highest level of each image should have
correspondence on the other image. Image matching thus
can start with an exhaustive search for the best matching of
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the central area of the reference image to the matched image
(or vice versa) using the similarity distance defined by (45),
which yields an approximate parallax vector for this central
area. Parallax vector for each integer-indexed position of this
central area can then be fine-tuned also by using (45). Known
parallax vectors can then be propagated from the central area
to the outer rings, ring by ring, until the boundary of partial
correspondence is reached, and this can be done fully au-
tomatically. Gross errors of the resultant parallax field can
be detected and corrected automatically by using the local
continuity constraint.

5.2 Hierarchical Parallax Propagation

After image matching on a higher (j+1)-th level, the parallax
field should then be propagated to the next lower (finer) j-th
level. The initial parallax field on the current j-th level can be
obtained by interpolating the parallax field at the (j + 1)-th
level. The inverse of the similarity distance of (45) for each
position on the higher level may be taken as the weighting
factor for linear or nonlinear interpolation.

After matching through intermediate levels, a number of ho-
mologous matched point pairs can then be selected automat-
ically, the focal length of each image and five relative orien-
tation parameters can then be solved via a direct closed-form
solution [Pan et al, 1995] from these pure image coordinates.
Note that the standard aerial stereo pairs with closely parallel
principal axes correspond to a degeneracy of that direct so-
lution. The solution of two focal lengths is sensitive, though
indeed solvable. For robotic stereo images with an essential
vergence angle, the solution is robust enough.

5.3 An Example of Real Aerial Images

The complete procedure consists of complex wavelet trans-
form, spiral matching on the top level, and hierarchical
matching through intermediate levels, solving the two focal
lengths and relative orientation, up to surface reconstruction
and visualization. This procedure has been implemented and
tested with real images. Fig.4-6 show an example of matching
a pair of real aerial images. Through visual checking of each
matched position pairs, no gross error is found. As we only
match regular points to normal and diagonal regular points,
the matching errors bound to 0.5 pixel on each level. This
wavelet-based approach can in principle reach a resolution of
2 x 2. We shall leave the final pixel-level or subpixel-level
matching to least-square global matching, to which, wavelet
features may still be useful.

6 CONCLUSIONS

This paper presents a basic theory of uniform full-informatin
image matching using complex conjugate wavelet pyramids.
The basic procedure including the bottom-up wavelet mul-
tiresolution analysis and top-down image matching has been
implemented and tested with real images. The result is
promising. The feasibility of this approach is confirmed.
Rotation-invariant image matching is not discussed here due
to the length limit, which is the main focus of our current
research.
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Figure 4: Matched positions on left and right images of level 16 x 16
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Figure 5: Matched positions on left and right images of level 32 x 32
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Figure 6: Reconstructed surfaces on level 16 x 16 (left)

and 64 x 64 (right)

Surfaces are viewed from left to right relative to the original images.
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