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ABSTRACT

Given is a triangulation of points on a surface which may be of abitrary topology. The aim is to reconstruct the surface using
triangular patches. We present a solution that combines approaches from photogrammetry and from computer aided geometric
design. The surface model built is capable of handling all kinds of surface data like normal vectors and break lines. The faces
of the triangulation are replaced by triangular Bézier patches that meet smoothly along their boundary curves. The smoothness
condition is weakened a bit to the concept of £G1-continuity, which allows us to use polynomial patches of low degree, in most

cases without splitting.

1 INTRODUCTION

The problem of fitting a surface to a set of data points has
been investigated in several scientific disciplines. On one -hand
there are the photogrammetetrists who are interested in build-
ing a Digital Terrain Model (DTM) from measured points on
the earth's surface. In recent years the field of interest spread
into medicine, modelling of buildings and many areas more.
On the other hand there is the Computer Aided Geometric
Design (CAGD) community, which has been investigating the
same task from a different point of view and being motiv-
ated mainly by applications in Computer Aided Design. This
paper aims at presenting a surface model, founded on the
knowledge of both sides. It has the following characteristics:

o The model has no shape restrictions and it is independ-

ent of the coordinate system.

The surface model is built on a triangulation of the data
points, so the original measurements may be preserved.
Filtering of measurement errors may be incorporated.

The surface is smooth, except for so-called break lines
where a difference in the first derivatives is desired. In
this context ‘smooth’ means tangent plane continuous.

It is possible to master the set of data for a whole
country.

The used methods are local. This means that the in-
sertion of a new face in the triangulation influences the
shape of the surface only in a restricted neighbourhood
of this face.

Current digital terrain models do not satisfy all the character-
istics described above. Many surface models are only 2.5 di-
mensional, which means that they can be described as graphs
of bivariate functions. This approach does not allow one to
represent bridges, overhangs, caves or similar effects. Surface
models built of flat triangles (triangular irregular networks —
TINs) either lack smoothness or require a large number of
points to establish the desired smoothness. It stands to reason
to utilize a spatial triangular mesh (a TIN) as a basis for tri-
angular patches which establish the smoothness. Therefore
the following steps are to be taken:

1. Estimation of surface normals at the vertices of the
triangulation and filtering of measurement errors.
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2. Constructing a curve mesh that interpolates the vertices
of the triangulation as well as the surface normals at
these vertices. The curves of the mesh are the boundary
curves of the triangular patches.

. Constructing triangular surface patches that interpolate
these vertex data and these boundary curves of the
network. Furthermore two adjacent patches must have
the same tangent planes (with small deviations allowed)
along their common boundary curve.

This is a common approach to the stated problem. Our con-
tributions are as follows. In step 2, we also determine the field
of surface normals along the boundary curves. This field is
discretized by computing some of its representatives at vari-
ous positions along the edge. The three fields of surface
normals along boundary curves, which are the delimiters of
one triangular face, are then approximated or interpolated
in step 3. Hereby the interpolation conditions regarding the
boundary curves are still fulfilied. Because discretized fields
are used instead of interpolating the continous fields, two ad-
jacent patches do not exactly join smoothly, but possess some
deviation angle €. We take care that ¢ is sufficiently small and
thus it will have no disturbing effects when shading the sur-
face, computing contour lines, calculating volumes, etc. To
regularize the solution, the ¢G' algorithm is combined with
the minimization of an appropriate fairness measure.

Let us briefly outline our presentation. In section 2, some pre-
liminaries are described: the theory of Bézier triangles, which
are a geometric representation of polynomial surfaces, some
aspects of variational surface design and prediction. In sec-
tion 3, related work from CAGD as well as photogrammetry
is presented. Section 4 deals with the estimation of surface
normals and the computation of boundary curves along with
their normal vector fields. Section 5 shows how to insert the
patches into the mesh of curves. In the concluding remarks
we list the possibilities obtained with our approach.

2 PRELIMINARIES

2.1 Bézier triangles

Since Bézier triangles are rarely used in photogram-
metry, we give a short introduction (for more details, see
[Hoschek,1993]). A Bézier triangle (triangular Bézier patch)
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represents a polynomial surface of degree = in R? with help
of a control net Py, with ¢, 5,k > 0and i +j+k =n (see
Figure 1). The points P;;; are called control points, as the
shape of the surface can be controlied by their position. The
parameter domain is a triangle A(R, S, T). A Point U in this
triangle can be described by its barycentric coordinates, the
triple (r, s,t) with r+s+¢ = 1 and U(r, s,t) = rR+sS+tT.

P()30

Figure 1: Control net and parameter triangle

The point P(r,s,t) on the surface to the point U in the
parameter triangle is computed with the following recursive
de Casteljau algorithm(see Figure 2):

L Py =Py

-1 -1 :
opq o+1,p,q + SPo,p+1,q + tPD‘p,q+1 with

o+p+q+1l = n P, is therefore the image
of U under the affine map from A(R,S,T) onto

-1 I-1 1-1
A(Po+l,p,q’ Po,p+1,q’ Po,p,q+1)'

2. P = rpPI

3. Pgoo := P(r,s,t) is the desired point on the surface.
Bézier triangles have the following properties:

e The surface has a polynomial parametric representation
of degree n, expressible with Bernstein polynomials as

P(r s, t) = Z Py Biji(r, s,t) (1
i+ +k=n

. n oy Gk
with B (r, s,t) = i!j!k!r sTt".

e End point interpolation: P,qo is the point on the
surface corresponding to the point R in parameter
space. The tangent plane at P,qo contains the points
P,_1,10 and P,_1,0,1. Analogy applies for Po,o and
Poon-

e The boundary curves of a Bézier triangle are Bézier
curves. Their control polygons are the boundary poly-
gons of the control net. The other control points of the
surface are called ‘inner points'.

n =2 P 02
T
AN
R S

Po2o

Figure 2: Constructing a point, subdivision and derivatives

e The tangent plane at Pgy is defined by the three points
Pis’ Poio s Plor -

e The directional derivative D, to the direction r in para-
meter space is given by the affine image of r in the
triangle that is obtained in the last but one step of the
de Casteljau algorithm.

e The de Casteljau algorithm has the following subdivi-
sion property: During the computation of P(r, s,1) the
control nets of the three subpatches to the parameter
triangles A(R,S,U), A(U,S,T) and A(R,U,T)
are obtained. The control points are Péjo with @ +
7+ 1 = n and analogously for the other two control
nets. As an example, in Figure 2 one of the new nets is
P200, P110, Poso, Pioo, Phio, P3oo. The new control
nets lie closer to the surface than the original one.

The subdivision algorithm mentioned above can be performed
for more points in parameter space simultaneously. Choosing
three points in the parameter space at the midpoints of each
edge of the parameter triangle yields four new control nets
describing the surface. Each of these control nets can be sub-
divided with the same points in parameter space again. This
leads to a sequence of control nets that are fastly converging
towards the surface (see [Hoschek,1993]). If subdivision is
mentioned in the following, it has always to be understood
as subdivision based on the edge midpoints of the parameter
triangle.

2.2 Variational surface design

Pleasing surface shapes or surfaces with specific physical

properties are often obtained as solutions of variational prob-
lems.

A frequently used fairness measure for a surface S{u,v) is
the linearized thin plate energy

E = /(siu + 282, + 82, )dudv. (2)

Although it is dependent on the parametrization, it is of-
ten sufficient to minimize this quadratic functional in a linear
space of surface candidates. This clearly amounts to the solu-
tion of a linear system. Other functionals, partially paramet-
rization invariant, are discussed in [Greiner,1994], along with
a technique to solve the nonlinear optimization iteratively by
linear problems. These are obtained when the solution sur-
face in step IV is used as parameter domain for the improved
solution in step N + 1.

In our approach, variational design is basically used for regu-
larization. Therefore, it is sufficient to use even simpler meas-
ures that may be applied directly to a piecewise linear mesh,
such as the control net of a Bézier triangle. The net shall con-
sist of points P;,4=1,...,n, and of edges e;,7 = 1,...,m.
Then, an energy for the network may be formulated as the
energy of a configuration of springs with one spring placed
along each edge e;j,

m

Bs =Y rylle]” (3)

Jj=1

The spring constants r; introduce additional flexibility in
choosing the functional. We often set all constants equal to 1.
Another choice discussed in [Eck,1995] yields approximations
of harmonic maps.
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A similar functional that may be applied to linear networks
is based on so-called ‘umbrella vectors’ which are associ-
ated with each vertex P; of the net. If P; has k; neigh-
bours Q;j,7 =1,..., k;, the umbrella vector at P; is defined
as [Kobbelt,1995]:

kg
1
AP, =P, — EZQU. (4)

Jj=1

The euclidean length of AP, can be seen as a discrete meas-
ure for the mean curvature at P;. This results in the fairness
functional

U=> llaP’. ()

An application is the refinement of a network. New vertices
are inserted such that U is minimized.

2.3 Predicting surface data

Prediction is a surface interpolation and approximation
method ([Wild,1983]). It uses radial basis functions which
are well studied in approximation theory, numerical analysis
and CAGD (e.g. [Hoschek,1993]). The surface is considered
to be a bivariate function which shall be approximated by the
prediction function. The prediction function is sufficiently of-
ten differentiable, therefore surface normals and curvature can
be calculated. It is also possible to force the prediction func-
tion to have certain derivatives at given points. Thus tangents
to the surface in a given direction or surface normals can be
prescribed.

3 RELATED WORK

There is a rich literature in CAGD dealing with the construc-
tion of surfaces based on polynomial patches. Most methods
are covered in the monograph [Hoschek,1993]. We therefore
just point to a few more recent developments.

Generalizations of the classical minimum norm networks by
G. Nielson to parametric surface design have been discussed
in [Kolb,1995]. The methods are global and therefore not
applicable for huge data sets.

An elegant approach for dealing with smooth surfaces com-
posed of triangular or rectangular polynomial patches are the
surface splines in [Peters,1995]. For the present application,
the method would generate too many patches.

Approximately smooth surfaces have been investigated in
[Mann,1992]. The patches require curvature information at
the vertices and yield very pleasing results if enough data are
available for producing good curvature estimates. This does
not really correspond to the present scenario.

A very promising approach to surface modeling are the hier-
archical techniques in [Eck,1995]. They work very well on
TINs and more generally on so-called subdivision surfaces.
Some ingredients of these algorithms, such as parametriza-
tion based on harmonic maps, may also be useful for our
application.

In view of the lack of a single method that would satisfy all our
requirements we decided to implement our own version, which
is an appropriate combination of known techniques taylored
towards the applications we have in mind.

4 ESTIMATION OF NORMALS

4.1 Estimating the surface normals

The process of estimating the surface normals must be inde-
pendent of the coordinate system and local. For each point
P, its surface normal n, its tangent plane r respectively, is
calculated.

To make it a local process, only a neighbourhood of a point
P is used to calculate the surface normal at P. The neig-
bourhood {Q1, Qz,...} of a point can either be defined via
generations of points (topological norm) in the triangulation
around this point or via distances (euclidean norm). The set
of points {Q1, Q2, ...} having a distance to the centerpoint
P less than or equal to s can be described as a subset of the
neighbourhood of P with n generations, where the points in
the n-th generation have a distance to P larger than or equal
to s. This definition prevents including points which are close
to P in the sense of distance but lie completely elsewhere on
the surface. This situation can arise for example when inter-
polating the surface data of a cave. Still there may exist one
or more points Q; in the neighbourhood of P which will have
to be excluded from the estimation process. This results from
an estimation technique, where we need surface regions that
are definable as graphs of bivariate functions over an appropri-
ate parameter plane (using the approach in [Opitz, 1994], this
restriction could be avoided however). To find these points,
the direct way from P to Q; via the edges of the triangulation
has to be examined. If one of the slopes of the planes against
an approximate tangent plane at P exceeds a threshold value
(e.g. 80°), then Q; has to be excluded (see Figure 3).

[exluded pointsﬁ

Figure 3: Interpolation in a cave

To guarantee that the estimation of n is independent of the
coordinate system, the interpolation is done in a local coor-
dinate system whose (z,y)-plane is the actual approximate
tangent plane 7 of the point P. The plane 7 is updated in
an iterative process. The starting value 1y for the iteration
can either be a result of the triangulation process, or can be
computed by averaging the normal vectors of the triangles
meeting at P. The iteration runs as follows:

1. The points Q; and P are transformed into a coordinate
system based on an approximation for the tangent plane

(7).
2. Prediction yields a surface, whose tangent plane at P

delivers the next approximation (7i+1). If desired, fil-
tering can be performed in this step as well.

3. If the angle between 7; and 7;4, is smaller than a cer-
tain threshold value, the process is stopped. Otherwise
Ti4+1 SErves as a new entry for step 1.

The curvature can also be computed from the prediction func-
tion. This could be used for constructing the curves between
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two vertices of the triangulation. If filtering is applied, the
vertices of the triangulation obtain new coordinates.

4.2 Calculating the boundary curves and their normal
vector fields

Boundary curves Each boundary curve replaces an edge
of the triangulation. The end points of the curves are the
vertices of the triangulation. All curves meeting in one point
must have tangents at this point that lie in a common tangent
plane. In general this tangent plane is obtained by calculating
normal vectors for each point of the triangulation.

The boundary curves shall be of degree three. This guarantees
compatibility to various systems based on spatial curves. For
example in [Halmer,1996] a way to adjust spatial curve nets
composed of curves of degree three is described. In cases
where the curves are given, only the normal vector fields along
these curves have to be computed. Otherwise the task is to
determine a curve c(t),t € [ta, ts], that interpolates two given
points Po = ¢(ta) and P1 = ¢(tp). Py and P, are vertices
of the triangulation, their surface normalis are ng and n;.
The curve c(t) must also fullfil the ‘tangent plane conditions’
¢(ta) -no = 0and ¢(tp) - ny = 0. As the curves are of degree
three, we just need to compute ¢(t,) and ¢(tp).

The edges of the triangulation emanating from one point
prescribe an order: Looking at that point against the dir-
ection of its normal vector each edge has one edge to its
left and one to its right. This order must be maintained by
the curves [Kobbelt,1995]. Laying the tangent ¢(t,) in Po
in the plane through P¢P: and ng guarantees that the or-
dering prescribed by the edges is maintained. Together with
¢(ta) -1 = 0 the direction of the tangent is determined com-
pletely. Analogy applies for ¢(¢p). The length of the first
derivative vectors can be chosen in a way that the curvature
of the surface computed in a previous step is approximated
(interpolation is possible only for planar curves, which needs
another choice of the tangent directions; e.g. [Mann,1992]).

Normal vector field Given is a curve c(t),t € [tq,t5], on
a surface. The surface is represented by points and their
surface normals. The goal is to compute the surface normal
vector field along the curve. The field is discretized. For that,
parameter values t;, to <t; <tp, s =1,...,k, to points on
this curve are given. The notation for the endpoints remains
as explained before. The points in the neighbourhood of Py
and P, are Q1,Q2,... and their normals i1, fia, . . ..

To calculate the normal vector field the points
Po,P1,Q1,Q2,... and their normals are transformed
into a coordinate system which is solely dependent on these
points and possibly also on their normals. However, the
triangulation of these points has to be describable as a graph
of a bivariate function. For determining the normals in the
points c(t;) prediction is used. The data to be interpolated
are: the points on the curve c(¢;) and the tangents ¢(%;), the
points Py, P1, Q1,Q2, ... and their normals. The discretized
normal vector field is formed by the normals of the prediction
function at c(¢;).

5 COMPUTING THE BEZIER TRIANGLES

The previous section described how to interpolate surface nor-
mals, boundary curves and normal vector fields along these
boundary curves. Now triangular patches have to be con-
structed for each face of the triangulation interpolating the
data. The examples given in this section are based on trian-
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gulations of analytical surfaces.

5.1

Two adjacent patches are joined smoothly if they have the
same tangent planes along their common boundary curve. In
this case they are geometrically continuous of first order (G1).

eG1 continuity

To maintain locality, the determination of the inner control
points of adjacent patches shall be independent from each
other, and just based on the boundary data (curves and nor-
mals}. Continuous normal vector fields can in general not
be interpolated with Bézier triangles. However, if the field
is interpolated or approximated at a number of positions, the
tangent planes of the adjacent patches will not match exactly,
but it can be expected, that they deviate from each other by a
small angle only. Therefore this kind of “continuity” is called
eG1. The deviation of tangent plane fields can be judged in
two ways:

1. Comparing two adjacent patches directly: The maxi-
mum deviation angle shall be ~.

. Comparing the normal vector field of a patch with
the given normal vector field: The maximum deviation
angle shall be I; then the first criterion is satisfied as
well.

The angle v is a user defined quality measure. What needs
to be done if the y—criterion can not be satisfied, is described
later on.

To ensure fast reconstruction and to reduce the amount of
data, we restricted ourselves to use patches of degree three
and four. Patches of higher degree also lead to larger systems
of equations and their shape is more likely to have unpleasing
areas of high curvature or oscillation.

5.2

It is well known and follows immediately from the tangent
plane construction with the algorithm of de Casteljau that the
tangent planes of a Bézier triangle along a boundary curve
depend only on the corresponding boundary control points
and on the points of the neighbouring row. In the case of a
Bézier triangle of degree three, there is only one inner point.
All the tangent planes along the boundary are dependent on
the choice of this point. In the case of degree four, always a
pair of two inner control points have influence on the tangent
plane along a boundary curve.

Inner control points and tangent planes

The functional dependency between the tangent plane at P
and the inner points is easily derived. Let P be a point of
the Bézier curve whose control points are Pzgg, P210, P10,
Poso; its curve parameter shall be ¢. Further, let Q be the
point with parameter ¢ on the Bézier curve with control points
Pao1, P1i1, Po21. Then q = Q — P is a tangent vector at
P. With n as normal vector at P, we therefore have

(6)

In terms of the unknown inner point P11; and using the Bern-
stein polynomials for Bézier curves this can be written as

n-q=_0.

n-q:n»(Q-—P):O:
n-((1=t)*Paoy + 2t(1 = )P111 + t°Poyy — P),
2((1 = t)n- Py =n- (P — (1 —1)*Pao1 — t*Poai).

(7

Equation 8 is a scalar product and therefore each boundary
normal to be interpolated introduces one linear scalar equation
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Figure 4. Approximation of normals

for P111. Hence, with a cubic Bézier triangle three normal
vectors can be interpolated. The way to extend equation 8 for
Bézier triangles of degree four is obvious. A Bézier triangle
of degree four has three inner points and thus nine normals
at the edges can be interpolated.

Given the same data as in figure 4 — two adjacent patches
of degree four — but using interpolation of three normals
per boundary, the mean value of the deviation angle of the
tangent planes would be 0.54°, the maximum value would be
1.21°. Furthermore, the shape of the Bézier triangles would
be curved less regularly.

5.3 Approximation of normal vector fields

Instead of interpolating the field of surface normals at a cer-
tain number of positions it can also be approximated at more
positions. As it might be expected, this leads to better res-
ults. To approximate the normal vector field in the sense of
least squares,

k
F=Y(n-q), withq=Q P, ()

i=1

must be minimized. P; is a point on the boundary of the
patch, Q; relates to it as explained before. n; represents the
estimated normal vector at P; and k is the number of normal
vectors for approximation. We chose {|n;|| = 1, otherwise
equation 8 is a weighted adjustment. The weight for one
equation would be the square of the length of n;. Function 8
is quadratic. Its minimum is the least squares solution of
the overdetermined linear system Az = [. A contains the
normal vectors, multiplied with a Bernstein polynomial, z the
coordinates of the inner points and [ the known points of
the control net, each multiplied with one of the Bernstein
polynomials.

Figure 4 shows two adjacent patches of degree four. Along
the boundary curves the surface normals for approximation
are drawn. The mean value of the deviation of the tangent
planes is 0.44°, the maximum value is 0.94°.

Figure 5: Approximation, Bézier triangles that tumble over

The question of how many normals per edge shall be approx-
imated needs to be raised. For Bézier triangles of degree four
a number of six normals for approximation per edge turned
out to be sufficient in general.

5.4 Approximation of normal vector fields and minimi-
zing the surface energy

In areas of very small curvature (the Bézier triangles are flat)
the positions of the inner points are only weakly determined by
equations 6 or 8. In the case of Bézier triangles of degree three
the system of equations becomes singular, if there are no three
normals that form a basis in R®. By examining (A*A)™! it
can be shown that the inner points are determined weakly in
their position perpendicular to the normals but strongly in the
direction of the normals. It can be said that the position of
the inner points perpendicular to the normals does not have
a strong influence on the approximation of the normals. Thus
the inner points also could lie “outside” of the points along the
edges. This leads to a Bézier triangle that overturns, tumbles
over (see Figure 5). In such a case, the vectors g tend to be
very small where the patch tumbles over.

Therefore, some kind of regularization must be implied. In-
stead of minimizing equation 8, the following combined func-
tional will be minimized:

k
Fo=a() (ni-q)’)+(l-a)B, withae0,1]. (9)

i=1

E is a term for the surface energy. it can be any of the func-
tionals discussed in section 2.2. We simply used the spring
energy functional Es with equal spring constants applied to
the control net after one subdivision. More than two subdivi-
sions do not make sense. Experiments showed that a-values
should be in the range of 0.9 to 0.95.

Figure 6 shows eleven Bézier triangles; o = 0.95, the net is
subdivided once. The control nets are drawn as well. The
surface shown in figure 5 has been computed with the same
data, but without applying regularisation.

5.5 Splitting the face for a better approximation

There may occur surface data that is not compatible with the
~—criterion, described in section 5.1. In such a case a face
has to be split along the edge where the criterion could not
be fulfilled. If the inner points shall be stored permanently,
the faces have to be divided and the triangulation must be
updated. If the inner points are calculated each time they are
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Figure 6: Approximation with surface energy minimization

used, it is sufficient to divide the patch that cannot fullfil the
criterion.

6 CONCLUDING REMARKS

Due to the parametrization of the surface over a TIN, this
approach obtains a universality which allows one to model
surfaces of abitrary topology. Because of the use of the sur-
face normals at the vertices of the triangles, it is furthermore
very flexible in the adaption of the subsistent data:

e Breaklines can be taken into account by giving two nor-
mal vectors to those surface points that are situated
along the breaklines, one for each side. Only points
lying on the appropriate side of the breakline may in-
fluence the estimation process of the surface normal.

Structure lines, e.g. mountain ridges or the bottom of
a valley, may be taken into account by an appropriate
triangulation and choice of the surface normals and the
tangent plane field.

Contour lines, e.g. digitized from a map, are perpen-
dicular to the surface normals, and hilltops are points
with known surface normals. This can be exploited in
the estimation of the normals by introducing constraints
for the derivatives.

This is a preliminary report on our progress in a larger re-
search project. Further studies are necessary, such as data re-
duction by appropriate preprocessing, hierarchical modelling,
refined estimation techniques and others.
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